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Abstract
The stability of circular vortices to normal mode perturbations is studied in a
multi-layer quasi-geostrophic model. The stratification is fitted on the Gulf of
Cadiz where many Mediterranean Water (MW) eddies are generated. Obser-
vations of MW eddies are used to determine the parameters of the reference
experiment; sensitivity tests are conducted around this basic case. The
objective of the study is two-fold: (a) determine the growth rates and nonlinear
evolutions of unstable perturbations for different three-dimensional (3D)
velocity structures of the vortices, (b) check if the different structure of our
idealized vortices, mimicking MW cyclones and anticyclones, can induce
different stability properties in a model that conserves parity symmetry, and
apply these results to observed MW eddies. The linear stability analysis
reveals that, among many 3D distributions of velocity, the observed eddies are
close to maximal stability, with instability time scales longer than 100 days
(these time scales would be less than 10 days for vertically more sheared
eddies). The elliptical deformation is most unstable for realistic eddies (the
antisymmetric one dominates for small eddies and the triangular one for large
eddies); the antisymmetric mode is stronger for cyclones than for anticyclones.
Nonlinear evolutions of eddies with radii of about 30 km, and elliptically
perturbed, lead to their re-organization into 3D tripoles; smaller eddies are
stable and larger eddies break into 3D dipoles. Horizontally more sheared
eddies are more unstable and sustain more asymmetric instabilities. In
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summary, few differences were found between cyclone and anticyclone sta-
bility, except for strong horizontal velocity shears.

1. Introduction

The Mediterranean Sea is an evaporation basin which produces salty waters; these waters are
then exported into the Atlantic Ocean via the Straits of Gibraltar. There, they mix with North
Atlantic Central Water while cascading down the continental slope (Madelain 1970). This
Mediterranean Water (MW) outflow adjusts hydrostatically as two along-slope currents at 800
and 1200 m depths south of Portugal, near 36o N (Chérubin et al 2000). These currents flow
across deep and narrow canyons which destabilize them (Chérubin et al 2007). This desta-
bilization leads to the formation of anticyclonic eddies of MW (called meddies) and of
shallower MW cyclones. Meddies are intensified between 800 and 1200 m depths, and have
thermohaline radii (radius of maximal radial gradient in temperature and salinity) varying
between 15 and 45 km. MW cyclones are intensified (both in temperature, salinity and
velocity) between 600 and 1000 m depths, but they also have a strong dynamical signature
above this level; the few MW cyclones fully measured had a thermohaline radius of about
30 km (Carton et al 2002, Serra and Ambar 2002, Ambar et al 2008). MW cyclones and
anticyclones often pair at the generation sites and these dipoles can remain coherent and drift
cyclonically across the Gulf of Cadiz, before separating (Carton et al 2010). Observations at
sea, as well as model results, indicate that both MW cyclones and anticyclones are relatively
stable, but that most cyclones are found near the Iberian Peninsula (mostly in the Gulf of
Cadiz) while meddies spread out across the Northeastern Atlantic Ocean (Ménesguen
et al 2012, Barbosa Aguiar et al 2013).

The present study is devoted to analyzing the conditions under which such vortices could
become barotropically or baroclinically unstable. The settings for the study are idealized,
though, with a five-layer quasi-geostrophic model having parameters (stratification, velocity
and general structure of potential vorticity) fitted to the in situ data (Paillet et al 2002, Carton
et al 2002, see subsection 2.2).

The quasi-geostrophic model allows detailed stability calculations but has parity sym-
metry. Thus, any difference in stability properties possibly found in this study would only
result from the different three-dimensional (3D) structure of the eddies in velocity and in
potential vorticity. Therefore, the terms cyclones and anticyclones hereafter refer more spe-
cifically to this 3D structure than to the sense of rotation of the vortices (again due to
parity symmetry).

The paper is organized as follows: section 2 details the model and physical conditions of
the study. Section 3 presents the linear stability results. In section 4, the possible nonlinear
evolutions of these eddies are shown and analysed. A discussion is conducted on the several
possible evolutions of linearly unstable cyclones and anticyclones, depending on their 3D
structure. Finally, a conclusion is provided and an appendix complements the linear stabi-
lity study.

2. Model and physical settings

2.1. Quasi-geostrophic model

Vortex stability is studied here in a five-layer quasi-geostrophic model. This choice is made to
minimize the number of parameters for the model, while still allowing the representation of
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the vertical structure of MW eddies (see below for more details). This model has flat surface
and bottom, and due to the small to medium size of these eddies, the f-plane approximation is
used. No forcing nor dissipation is applied (except numerical biharmonic dissipation kept to a
minimum in the nonlinear numerical model).

The layerwise quasi-geostrophic equations are

( )
q

t
j top to bottom

d

d
0, 1, , 5, (1)j = = …

with layerwise potential vorticities (PV)

( ) ( )q F F , (2)
j j j j j j j j j j

2
, 1 1 , 1 1

 ψ ψ ψ ψ ψ= + − + −− − + +

when applicable (the uppermost and lowermost PV layers have no coupling term with any
layer above nor below them, respectively). The layer coupling coefficients are

( )
( )F

f

gH
1 . (3)j j

j j j

, 1

1 0

2

0

1

ρ

ρ ρ
= −

−
±

±

±

2.2. Model parameters

The model parameters are chosen as follows:
The Coriolis parameter is computed at N35o .
The choice of layer numbers and thicknesses is based on observations of the vertical

structure of the potential vorticity anomaly of MW cyclones and anticyclones (anomalies with
respect to the environment).

Meddies have maximum (negative) potential vorticity anomaly between 800 and 1300 m
depths; two other (opposite signed) anomalies lie between 600 and 800 m, and between 1300
and 1500 m depth, respectively (see Paillet et al 2002, Carton et al 2002). Enough obser-
vations at sea are available to assert that this vertically tripolar distribution of potential
vorticity anomaly is characteristic of meddies.

Far fewer data are unfortunately available for cyclones, but one calculation of potential
vorticity anomaly for a MW cyclone indicates a positive maximum between 600 and 1200 m
depth, and secondary (weaker) extrema between 0 and 600, 1200 and 1800, 1800 and 2000 m
depths, respectively (Carton et al 2002). Too few observations are available to firmly con-
clude on the predominance of vertical tripolar or dipolar distributions of potential vorticity
anomalies for MW cyclones in general. The layer thicknesses thus chosen (to represent these
potential vorticity structures) are summarized in table 1 .
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Table 1. Thicknesses of layers for the cyclone and anticyclone models, and density
differences between layers in both cases.

Layer H (cyclone)
Δρ(j, j + 1)
(cyclone) H (anticyclone) Δρ (anticyclone)

m kg m 3− m kg m 3−

1 600 1.26 600 0.95
2 600 0.125 200 0.35
3 600 0.075 500 0.15
4 200 0.062 200 0.1
5 2000 0.0 2500 0.0



These observations at sea also provide density (see Carton et al 2002). An average
density is obtained for all layers; with the layer thicknesses and the Coriolis parameter, these
densities correspond to internal deformation radii of 32, 14, 8 and 5 km respectively, which
are in fair agreement with the measured values in the Gulf of Cadiz (away from the con-
tinental slope). The density differences between layers are summarized in table 1.

2.3. Initial velocity profiles of the vortices

For all cases studied in the main body of this study, the mean flow is circular and its azimuthal
velocity is a power exponential of the radius

( )V U
r

R
r R

2
exp , (4)j j= − α α

where Uj is the layerwise velocity, R is the vortex radius, and 2, 3α = controls the slope of

the radial profile of velocity. This velocity profile corresponds to a radial profile of mean
streamfunction given by

( )( )U R r R2 2 , , (5)j jΨ γ α α= − α

where a x( , )γ is the incomplete gamma function defined by

a x t t t( , ) exp ( ) d . (6)
x

a

0

1∫γ = −−

In the simple case where 2α = , one recovers a Gaussian profile for jΨ .

Again, this choice is motivated by observations of MW eddies. In particular, Paillet et al
(2002) fitted a Rayleigh profile (i.e. that given by equation (4) with 2α = ) on a measured
radial profile of meddy velocity; this fit was fairly accurate close to the meddy center (where
the velocity increases linearly with the radius); in the outer part of the meddy, it was more
difficult to fit a single curve, and both the Rayleigh profile, or smoother profiles (like the
Rankine one in r1 ) or steeper profiles (like the cubic exponential profile, corresponding to
equation (4) with 3α = ) were acceptable.

Meddies (MW anticyclones) have maximal velocities on the order of −0.2–0.5ms 1− , at
20–30 km distances from their axis and at 800–1200 m depths (from experiments at sea; see
for instance Paillet et al 2002). Though far fewer observations of cyclones exist, MW
cyclones have maximal velocities on the order of 0.15–0.5ms 1− at about 20–30 km from their
axis and at 500–1100 m depths; note that, in MW cyclones, the average velocity in the upper
600 m of the ocean, is only slightly weaker than that in the 600 m just below.

Hereafter, we choose the length scale as R = 30 km (i.e. the scaled radius is unity for our
vortices) and the velocity scale is U 0.3 msmax

1= − . From the length and velocity scales, we
obtain a time scale of about 1.2 days.

From the analysis of data at our disposal, and setting a maximum velocity in layer 2 for
the cyclones, and in layer 3 for the anticyclones, the ratio of layerwise velocities leads to the
following values for the Uj :

U U U U U0.75, 1, 0.33, 0, 01 2 3 4 5= = = = = for the cyclone, and U U0, 0.5,1 2= = −
U U U1, 0.33, 03 4 5= − = − = for the anticyclone.

Therefore, we define hereafter as ‘reference cases’ the cyclones and anticyclones, having
these values of maximal layerwise velocity, and a Gaussian radial profile of mean stream-
function (corresponding to equations (4)–(6) with 2α = ).

On figure 1 , we plot the radial profiles of potential vorticity in the model for the
reference cases of cyclone and anticyclone. We note that the sign reversal of the radial
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gradient of potential vorticity occurs mainly along the vertical axis (from layer to layer), and
more weakly along the radial axis (for cyclones). Thus we anticipate that baroclinic instability
will be predominant for these vortices with 2α = , though barotropic instability can also
affect them (as was shown by Carton et al (1989), for two-dimensional Gaussian vortices).
Barotropic instability will be more efficient on cubic exponential vortices ( 3α = ) which have
a steeper radial profile of velocity.

To account for the various distributions of velocity in meddies or in MW cyclones in the
ocean, the ratios of layerwise velocities will be varied around the reference case in this study.
This will allow an investigation of the effects of such variations on the stability of these
vortices. Depending on their velocity distributions and with the given stratification, the
structure in potential vorticity of the cyclones and anticyclones in our model, can be vertically
dipolar or tripolar, initially. At finite times, instability can lead to the breaking of potential
vorticity poles, leading to more complex 3D structures in potential vorticity.

3. Linear stability

3.1. Theory and numerical method

For the linear stability study, the layerwise quasi-geostrophic equations (1)–(3) are linearized
around the axisymmetric mean flow (equations (4) and (5), and normal modes of the form

( ) ( )r t r il ct, , ( ) exp , (7)j j
⎡⎣ ⎤⎦ψ θ ϕ θ′ = −

are used as perturbations (where j 1, , 5= … is again the layer index). The phase speed of
these modes is Re c c( ) r= and their growth rate is l Im c l c( ) i= . When the radius is
discretized over a finite number of steps (Nr) in each layer, the linear problem is of the form

A r cB r k N j( ) ( ), 1, , , 1, , 5, (8)
j k j k rϕ ϕ= = … = …

where A and B are N N5 5r r× matrices depending on the mean flow velocity and potential
vorticity gradient. The boundary condition at infinity (in radius) for

j
ϕ is convergence towards

zero. Due to computing time constraints, N 80r = is chosen and the corresponding spatial step
for the linear stability study is r 0.04Δ = . The relative differences in growth rates between
N 60r = and N 80r = , tested with the anticyclones of figure 3 , is on the order of 0.1%. For a
few cases (calculation of the spatial structure of the eigenmodes, or comparison of growth
rates between the linear and nonlinear models), an even higher resolution (N 120r = ) is used.
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Figure 1. Radial profiles of potential vorticity in the model for cyclones (left), and for
anticyclones (right), in the reference case, with 2α = .



Equation (8) is solved in finite differences via a generalized eigenvalue/eigenvector solver
(LAPACK library).

In the appendix, we analyse the linear stability of different velocity and potential vorticity
profiles (other than power exponential), to highlight how vortex stability depends on the
details of the radial profile of velocity.

3.2. Influence of the vortex radius on its linear instability

Firstly, we consider vortices with Gaussian radial profiles of mean azimuthal velocity
(equations (4) and (5) with 2α = ). The vertical distribution of velocity is that of the refer-
ence case.

Figure 2 shows the variations of the growth rates with the vortex size for the cyclones and
anticyclones, for the gravest modes (l 1, 2, 3= ).

A common feature of all these figures is that the growth rates of the triangular mode l = 3
become large only for wide vortices (with radii on the order of 75 km). The elliptical mode
l = 2 dominates for Gaussian vortices ( 2α = ) with radii between about 30 and 75 km. This
predominance is more clear for anticyclones, for which it starts at radii of about 15 km. The
predominance of the elliptical mode is much more striking for cubic exponential vortices,
which are more sensitive to barotropic instability. This predominance of the elliptical mode
for barotropically unstable vortices has already been noticed in the 2D case (Carton
et al (1989)).
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Figure 2. Normalized growth rates of normal modes, with respect to the normalized
vortex radius R L for Gaussian cyclones (top left), Gaussian anticyclones (top right),
cubic exponential cyclones (bottom left) and cubic exponential anticyclones (bottom
right) and for wavenumbers l 1, 2, 3= .



The antisymmetric mode is clearly more unstable than the elliptical mode only for
Gaussian cyclones with radii between 10 and 25 km (and for anticyclones with radii between
5 and 10 km). For vortex radii below 5 km (R L 0.17< ), the quasi-geostrophic model results
may differ from the real ocean dynamics which involve strong vertical motions at these
submesocales. A primitive equation model would be necessary to study the stability of
small vortices.

As a first conclusion, the elliptical mode dominates in the instability of small to medium
size Gaussian anticyclones, while both antisymmetric and elliptical modes grow on small to
medium size Gaussian cyclones.

On the contrary, for both cyclones and anticyclones with a cubic exponential profile of
velocity, the elliptical mode of instability dominates that of the antisymmetric mode for nearly
all vortex sizes.

3.3. Influence of the layerwise velocity ratios on linear stability

Figure 3 presents the growth rates of elliptical normal modes (with l = 2) for Gaussian
cyclones and anticyclones ( 2α = ) in the (U U U U,1 2 3 2) and (U U U U,2 3 4 3) planes respec-
tively; thus, here we vary the ratios of maximal layerwise velocities of the mean flow.

For cyclones and anticyclones with 2α = , minimal growth rates are about 0.01 and
growth time scales about 120 days, for an elliptical perturbation. This occurs in particular for
the reference case.

For cyclones, growth rates increase if U U3 2 increases or decreases from the reference
value (0.33). This increase is related to the vertical structure of cyclones in potential vorticity
which depends on this velocity ratio. On the contrary, the growth rates are less dependent on
the ratio U U1 2. Note that the maximal growth rates, on the order of 0.2—or growth time
scales of 6 days—are obtained for strongly baroclinic cyclones. This is consistent with the
fact that for cyclones with 30 km radii, the instability is mostly baroclinic (see also figure 2
showing that growth rates increase with R L, for cyclones with radii around 30 km).

For anticyclones, growth rates are sensitive toU U4 3 and toU U2 3 because changes in both
ratios modify the vertical structure in potential vorticity. Note that the largest growth rates,
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Figure 3. Isolines of normalized growth rates of elliptical normal modes, in the
U U U U,1 2 3 2 plane for Gaussian cyclones (left), and in the U U U U,2 3 4 3 plane for
Gaussian anticyclones (right).



again corresponding to growth time scales of about 6 days, are obtained for strongly bar-
oclinic vortices.

For vortices with cubic exponential velocity profiles, the maximal growth rates of
elliptical perturbations are comparable to those for Gaussian vortices, while the minimal
growth rates are twice as large as those for Gaussian vortices (see figure 4 ). This is also
noticed on figure 2 for the reference case.

Finally, we present the geometrical structure of the normal mode perturbation for the
Gaussian anticyclone in the reference case (see figure 5 ). The phase of the perturbation
increases from layer 4 to layer 3 and decreases back to layer 2, contrary to the mean velocity.
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Figure 4. Isolines of normalized growth rates of elliptical normal modes, in the
U U U U,1 2 3 2 plane for cubic exponential cyclones (left), and in the U U U U,2 3 4 3 plane
for cubic exponential anticyclones (right).

Figure 5. Streamlines of the most unstable normal mode perturbation for the Gaussian
anticyclone ( 2α = ) in the reference case; layers 1–5 (left to right, then top to bottom)
are displayed.



This variation is characteristic of baroclinic instability. The modes in layers 2, 3, 4 are
strongly influenced by the intense mean flow via a noticeable change in phase at finite radius.
This feature is characteristic of a critical layer in the mean flow (where the angular rate for the
mean flow V rj equals the phase speed cr of the l = 2 wave). By approximating the radii of

phase change to r = 1.5 in layer 2 and to r = 1.3 in layer 4, we obtainV 0.04j ≈ in both layers,

and therefore V r 0.027, 0.031j ≈ at these radii, while c 0.027r ≈ .

4. Nonlinear evolutions

4.1. Numerical method

To study the nonlinear evolution of the unstable vortices, a small-amplitude, modal pertur-
bation is initially added to their circular streamfunction (equations (4)–(6) and simulations are
run in a numerical model of the complete quasi-geostrophic equations (1)–(3) . This
numerical model is based on a truncated, pseudo-spectral projection of the equations (in
space), with a Heun (mixed Euler–leapfrog) scheme in time. The time step is constrained by
the Courant–Friedrichs–Lewy condition. The number of grid points is 256 × 256 in the
horizontal plane (the simulations performed at 512 × 512 resolution show very similar
evolutions).

To avoid enstrophy accumulation at small scale, a weak biharmonic viscosity is added to
the model. It has been checked that this weak dissipation does not alter the outcome of the
simulations (which are performed on much shorter time scales than the viscous timescale).

As a consistency check between these nonlinear simulations, and the linear stability
analysis, simulations are performed with a small time interval to calculate the growth rates of
the elliptical mode in several cases. For the anticyclone in the reference case, the linear
growth rate is lc 0.011iσ = = while that obtained in the nonlinear simulation is 0.013σ = .
For the unstable anticyclone shown on figure 7 , the linear and nonlinear growth rates are

0.054σ = . For the unstable anticyclone shown on figure 8 , the linear and nonlinear growth
rates are 0.024σ = . Finally, for the unstable cyclone of figure 11 , these values are respec-
tively 0.088σ = and 0.084σ = . The relative error on the growth rates is on the order of 1–5%
(at most 15% for very weak growth rates). The correspondence is thus fair.

Firstly, the vortex radius is varied and the evolutions are characterized. In this study, only
vortices initially perturbed elliptically are studied. The stability for other initial perturbations
should be addressed in another article. In the second part of this section, the layerwise
velocity ratios are modified to determine the possible nonlinear regimes for various types
of vortices.

4.2. Influence of vortex size

For vortices in the reference case, and for an elliptical mode of deformation (l = 2), nonlinear
stability is observed when the vortex radius is smaller than 0.75 times the first internal radius
of deformation, R R0.75 d< , for cyclones and anticyclones (see figure 6 ). Unstable, perturbed
vortices break into two 3D dipoles if R r1.25 d> .5 Between these two bounds, perturbed
vortices stabilize nonlinearly as 3D tripoles, again for both polarities. This can be understood
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in terms of baroclinic instability for which shorter waves grow when the characteristic scale of
the mean flow increases.

For vortices with cubic exponential velocity profiles, the nonlinear regimes of antic-
yclones are similar to those for Gaussian vortices, whereas the regimes for cyclones indicate a
stronger instability: for R R0.75 d< , asymmetric breaking of the vortex is observed after
more than 10 turnover periods of the baroclinic (3D) tripole; larger cyclones break into
baroclinic (3D) dipoles (again for elliptical perturbations; see figure 6).

Two main regimes, namely baroclinic dipolar breaking and the formation of a baroclinic
tripole, are illustrated on figures 7 and 8. The difference between these two regimes lies in
particular in the distribution of potential vorticity out of the central elliptical core:

- when baroclinic dipolar breaking occurs (figure 7), the peripheral lobes of vorticity are
strong in each layer. They induce a large deformation on the core vortex. Thus, the
rotation of this central ellipse slows down, and each peripheral lobe moves towards each
end of the elliptical core. This leads, in the case of dipolar breaking, to the coupling of
each peripheral lobe with half of the core vortex, thereby amplifying again its aspect ratio.
Therefore a baroclinic dipole is formed.

- in the case of baroclinic tripole formation (figure 8), these 3D tripoles can assume
different shapes depending on the initial distribution of potential vorticity in the circular
vortex. When the maximum vertical gradient of potential vorticity lies between layers 2
and 3, the tripoles have satellites only above the core (Y-shaped tripoles; case of figure 8);
conversely, satellites will lie below the core for strong vertical gradients of potential
vorticity at these depths (Λ-shaped tripoles); finally, some tripoles will have satellites in
both layers (X-shaped tripoles), if the gradients above and below the core are comparable.

Figure 9 presents a schematic representation of these various forms of tripoles.
In figure 10 , we show the Fourier analysis (in angle) of the perturbation for dipolar

breaking and for tripole formation; the Fourier coefficients in the middle layer of each vortex
are plotted versus time. In both cases, the antisymmetric mode l = 1 remains weak (growing
from numerical noise); mode l = 2 is dominant but grows to a weaker amplitude when
nonlinear stabilization occurs than when dipolar breaking prevails. Also, the first harmonic
mode l = 4 is much weaker in the case of nonlinear stabilization. Indeed, intense short waves
are necessary for the splitting of vortices.
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Figure 6. Nonlinear regime diagram for cyclones and anticyclones with Gaussian (left)
or cubic exponential profiles (right), with respect to the vortex size, using the layerwise
distribution of velocity of the reference case.



Finally, another regime is shown which occurs mostly for vortices with cubic exponential
profiles of velocity, but also for Gaussian cyclones, with strong vertical shears of velocity
(figure 11). In this evolution, the filaments which are initially ejected from the elliptical core
vortex undergo slightly unequal deformation (due to the presence of mode l = 1), and
dissipation. This in turn leads to slightly asymmetric strengths of the peripheral lobes around
which these filaments can wrap. These unequal strengths of the satellite vortices lead to a
vacillation of the baroclinic tripolar (3D) structure, and to mode l 1, 2, 3= deformations of
the contour of the core vortex. The tripole extends and bends, and often, satellites can merge.
In its final state, the multi-layer vortex compound can still be rotating (as long as mode l = 2
still dominates) or it can be propagating (if mode l = 1 prevails). This asymmetric evolution is
made possible by the nonnegligible growth rate of mode l = 1 for vortices with radius close to
the first deformation radius.

4.3. Influence of the ratios of layerwise velocities

Now we present maps of nonlinear regimes in the parameter space of layerwise velocity ratios
(see figure 12 ). To obtain these maps, about 125 numerical simulations were performed.

Clearly, Gaussian cyclones and anticyclones tend to form baroclinic tripoles (of any of
the X, Y or Λ types) when the initial vortex is co-rotating, or slightly counter-rotating, in its
main three layers. Due to their dipolar or tripolar vertical structure in potential vorticity,
cyclones or anticyclones form 3D baroclinic tripoles which have opposite signs of vorticity in
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Figure 7. Time evolution (from left to right) of potential vorticity contours for an
unstable Gaussian anticyclone with l = 2, R = 1, U U 02 3 = and U U 04 3 = . The vortex
undergoes baroclinic dipolar breaking. Layers 2, 3, 4 are shown from top to bottom.
Contour intervals are q q0.2, 0.4

2 3
Δ Δ= = and q 0.5

4
Δ = .



their main three layers, that is, with a core in the central layer (layer 2 for cyclones and layer 3
for anticyclones) and with satellites of opposite signed vorticity, in the layers above and/or
below the core. The predominance of dipolar breaking when vortices are strongly counter-
rotating, or the formation of baroclinic tripoles in other cases, is indicative of a dominant
baroclinic instability.

Only when they are strongly co-rotating can Gaussian anticyclones form barotropic
tripoles in potential vorticity; these tripolar structures have a core and satellites in all layers
(2–4) and the cores are like signed in these layers. This is then the result of a dominant
barotropic instability.

On the contrary, for cubic exponential profiles of velocity, the horizontal velocity shear is
much stronger; thus barotropic instability is more influential on the nonlinear evolution of
vortices. This is manifested by the more frequent occurrence of horizontal breaking of vor-
tices (see the regime diagram in the velocity ratio plane in figure 12). This occurs obviously
for more barotropic vortices. The occurence of asymmetric breaking is more frequent than for
Gaussian vortices too, affecting both cubic exponential cyclones and anticyclones in the long
run, whereas mostly Gaussian cyclones break asymmetrically. Note that cubic exponential
cyclones with U U 0.751 2 = and U U 0.333 2 = can break whereas cubic exponential antic-
yclones with U U 0.52 3 = and U U 0.334 3 = stabilize.
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Figure 8. Time evolution (from left to right) of potential vorticity contours for an
unstable Gaussian anticyclone with l = 2, R = 1,U U 0.52 3 = andU U 0.54 3 = . Layers 2,
3, 4 are shown from top to bottom. The vortex undergoes stabilization into a Y-shaped
baroclinic (3D) tripole. Contour intervals are q q0.03, 0.3

2 3
Δ Δ= = and q 0.2

4
Δ = .



5. Conclusions

The linear stability analysis of circular vortices in a five-layer quasi-geostrophic model
indicates growth time scales of 10–100 days for normal mode perturbations (case of an
elliptical deformation). This elliptical mode dominates for vortices with size similar to the first
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Figure 9. Schematic representation of the Y tripole (top left), of the X tripole (top right)
and of the Λ tripole (bottom).

Figure 10. Time evolution of the Fourier amplitudes of modes l 1, 2, 4= in the middle
layer, for the dipolar breaking of a Gaussian anticyclone with an elliptical perturbation
(left) and for a nonlinear stabilization into a baroclinic tripole (right). Ampl(t) indicates
the modal amplitude on the ordinate axis.



internal radius of deformation (about 30 km), more strongly for anticyclones than for
cyclones. The antisymmetric mode is more unstable for small vortices in particular, and the
triangular one arises on large vortices. Note though that the antisymmetric mode can be
unstable for a wide range of vortex sizes.

For vortices with a Gaussian profile of velocity, baroclinic instability is dominant when
the vortex radius is similar to, or larger than, the first internal deformation radius. Barotropic
instability prevails for smaller eddies. Vortices with cubic exponential velocity profiles are
more sensitive to barotropic instability.

Eddies with velocity and size characteristics similar to those of meddies or of MW
cyclones are weakly unstable (growth time scales of 2–3 months, see also NGuyen et al
(2012) who find dominance of mode l = 1 for R Rd< and of mode l = 2 for R Rd> in general
agreement with our study).

Note also (see appendix below), that for different radial profiles of mean velocity, the
variation of the normal mode growth rates with the ratios of layerwise mean velocities are
similar, for all cyclones on the one hand, and for all anticyclones on the other. We also show
in this appendix that vortices with Gaussian streamfunction have similar instability properties
to vortices with Gaussian relative vorticity, and that they are more unstable than vortices
whose mean azimuthal velocity decays exponentially at large radii.

Nonlinear numerical simulations show that baroclinic instability dominates the evolution
of these unstable vortices when they have a Gaussian profile of velocity, whereas barotropic
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Figure 11. Time evolution (from left to right) of potential vorticity contours for an
unstable Gaussian cyclone with l = 2, R=1, U U 0.751 2 = − and U U 0.253 2 = − . The
vortex undergoes asymmetric destabilization. Layers 1, 2, 3 are shown from top to
bottom. Contour intervals are q q0.1, 0.4

1 2
Δ Δ= = and q 0.5

3
Δ = .



instability can be prevalent for cubic exponential velocity profiles or when the eddies are
strongly co-rotating.

When barotropic instability dominates, the formation of barotropic tripoles is possible for
co-rotating Gaussian anticyclones, whereas horizontal dipolar breaking is observed for cubic
exponential co-rotating vortices.

When baroclinic instability dominates, the nonlinear evolution of the vortices (of both
polarities) is either the formation of baroclinic (3D) tripoles, when the instability is not too
intense, or the breaking of the vortex into baroclinic (3D) dipoles, for stronger instabilities.

Baroclinic tripoles can form under various configurations, depending on the details of the
3D distribution of potential vorticity and on the vertical velocity shear. The elliptical core of
these tripoles lies in the central layer of the eddy while opposite signed satellites form either
above the core (Y-shaped tripoles), beneath it (Λ-shaped tripoles), or in both layers (X-
shaped tripoles).

A Fourier analysis of the time-varying perturbation has shown that tripole formation is
accompanied by the stabilization of the elliptical mode while its first harmonic grows only
moderately. On the contrary, dipolar breaking is due to cooperative nonlinear interactions
which amplify both the fundamental elliptical mode and its first harmonic, up to large
amplitudes.

It has also been found that asymmetric breaking can prevail on the long run, often after a
stage of 3D tripole formation, and essentially for cyclones, or for counter-rotating, cubic
exponential vortices. This evolution is due to the progressive amplification of the antisym-
metric mode (l = 1), both via linear and nonlinear effects, leading to a lateral vacillation and to
a bending of the tripole which may result in the merger of the satellites.
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Figure 12. Regime diagram of nonlinear evolutions in the parameter plane of the
layerwise velocity ratios for cyclones and anticyclones with Gaussian or cubic
exponential profiles of velocity.



To compare the results of our simple model with observations, we can note that cyclones
and anticyclones in the reference case are most unstable to the elliptical (l = 2) and anti-
symmetric (l = 1) perturbations, which have very long growth time scales (on the order of 3
months). In our nonlinear model, we showed that the formation of tripoles (and thus the long-
term preservation of the central vortex cores) is an often-found evolution in the velocity-ratio
parameter plane. This compares favorably with observations :

Tychensky and Carton (1998) showed that the upper potential vorticity pole of meddies
Hyperion, Ceres and Encelade were split into two parts. It is not unreasonable to attribute this
splitting to the interaction of these meddies with the nearby Azores Current, which exerts a
shear on these eddies (and thus creates mode 1 and 2 deformation).

Carton et al (2010) also found split upper potential vorticity poles in the interaction of
two meddies, southwest of Portugal. Again the shear exerted by each vortex on the other may
be held responsible for this splitting.

Ménesguen et al (2012) showed the tripolar structure of a meddy several months after its
generation.

Finally, our model has shown only a fairly modest difference in stability between
cyclonic and anticyclonic vortex initializations. The difference in stability between cyclones
and anticyclones is mostly related to the possibility of asymmetric breaking. The various
vertical structures of these cyclonic or anticyclonic vortices are not enough to account for the
observed differences in MW cyclone and anticyclone stability properties.

As far as oceanic vortex stability is concerned, our study is still idealized. Other effects
like frontality (large isopycnal deviations) or nonlinearity (Rossby numbers of order unity),
will have to be considered in a multi-layer shallow-water model or in a primitive equation
model with continuous stratification. External influences on vortex stability, such as that of
waves, of surrounding currents or of bottom topography (Sokolovskiy et al 2013), will also
have to be studied. Our study is only a first step in that direction.
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Appendix A. Complements on linear instability

This short complement presents the linear instability of vortices with different radial profiles
of velocity to assess the influence of these profiles on our results. Firstly, we consider the
velocity profile

( )V U
R

r
r Rexp 1 , (A.1)j j

2 2⎡⎣ ⎤⎦= − −

which corresponds to a Gaussian mean relative vorticity

( )U R r R2 exp . (A.2)j j
2 2 2 Ψ = − −

This relative vorticity profile is known to be barotropically stable in two-dimensional
flows (see again Carton et al (1989)). Here it can be sensitive to both barotropic and
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baroclinic instabilities. Indeed, the radial gradient of potential vorticity for this vortex changes
sign mostly along the vertical (as for the reference case vortices), but also horizontally. The
growth rates for mode l = 2 for cyclones and anticyclones with velocity profile (equation
(A.1)), are drawn on figure 13 . Clearly, there are few differences in linear instability between
our reference case and these vortices, in sensitivity to the layerwise velocity ratios. These
vortices are slightly more unstable than those of the reference case.

Finally, we present another velocity profile which again grows linearly in the core and
decays exponentially in the periphery of the vortex (note that this is another possibility for
meddy velocity profiles)

( )
V U

r R

r R1 sinh
. (A.3)j j 2

=
+
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Figure 13. Isolines of normalized growth rates of elliptical normal modes, in the
U U U U,1 2 3 2 plane for Gaussian anticyclones (left), and in the U U U U,2 3 4 3 plane for
Gaussian cyclones (right).

Figure 14. Isolines of normalized growth rates of elliptical normal modes, in the

U U U U,1 2 3 2 plane for ( )r r1 sinh ( )2+ anticyclones (left), and in the U U U U,2 3 4 3

plane for the cyclones (right).



Figure 14 presents the growth rates for cyclones and anticyclones with this profile
(equation (A.3)), which is less steep than our reference profile (equation (4) with 2α = ). The
patterns for the instability of cyclones and anticyclones are again globally comparable to
those of the reference case, but with much smaller growth rates. It is of interest to consider

also more compact vortices, with velocity profiles varying as (( ) ( )r R r R1 sinhn+ where

n is large. Then, the external velocity profile goes as ( )r nr Rexp − ; this means that the

apparent size of the vortices is smaller (in R n), and since baroclinic instability prevails, the
vortices become less unstable as n increase. For n = 4, the vortices are linearly stable.
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