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Meander of a Barotropic Zonal Current Crossing a Bottom Ridge

(Periodic Regime)

V.F. KOZLOV AND M.A. SOKOLOVSKIY

The interaction of a fluctuating barotropic zonal flow with an infin-
ice bottom ridge is examined in the quasi-geostrophic approximation on the
3 plane. The solution of the equation for pressure perturbation is con-
structed by direct asymptotic expansion with respect to the small parameter,
proportional to the amplitude of fluctuations of the principal flow. The
first approximation of Green's function for easterly and westerly flows is
analyzed. The feasibility of emploving this model for explaining features
in the time variability of the antarctic circumpolar current is discussed.

In the absence of bottom irregularities
(6=0) Eq. (1) permits the solution p=—U(8)y,
corresponding to zenal flow with velocity ult),
which is then assumed to be of constant sign. We
assume a "cylindrical" perturbation of the bottom
topography in the form h=hA(g), §=rcosa—ysinaz,
where, unlike in [4], § has the meaning of the
distance along the normal to the isobath §=0,
inclined at angle o to the meridian, [a|<m/2.
Setting

The question of the effect of bottom-topogra-
phy irregularities in the form of an infinite
depression, ridge or trough on the steady-state
barotropic zonal flow was examined by Clarke and
Fofonoff [9], McIntyre [l11], Porter and Rattray
[12] and Vaziri and Bover [14]. Much less work
was done for investigating unsteady modes (tran-
sients as well as periodic); mention should be
made here of work by Robinson and Gadgil [13]
and by the first of the present authors [4].

In this paper we consider the problem of
meander of an oscillating zonal current above a
non-moving arbitrarily oriented infinite ridge;
the solution is periodic in time. The use of
perturbation with respect to the small amplitude
of fluctuations of the principal flow makes it

p=—U()y+ab(g, 1), (2)

for the perturbation pressure field we obtain from
(1) the expression

possible to obtain corrections to the Green func- 2u¢gp+¢g+lJU)wﬁg%2x¢&=m—lJU)h%g), (3)
tion for flows with easterly and westerly direc-
tions in explicit form. where
Statement of the problem. On the assumption
that the relative perturbation of the bottom p=xy/2cosa, x==Kk/2cOsc. (4)

topographv is of the order of the Rossby number,
the equation of potential vorticity in the quasi-
geostrophic approximation for the barotropic
ocean on the § plane in nondimensional form can
be written as [&4]

Note that the identical vanishing of nonlinear
terms in Eq. (3) at arbitrary ¢ is the result of
the fact that ¥ and 7 are a function of only a
single space coordinate ().

Since in the presence of friction and finite
h(E) the pressure perturbations must decay at in-
finity, single integration of Eq. (3) yields

vAp+J(p, Ap+y+aoh) +kAp=0. (1)

Here & and J are horizontal Laplace and Jacobi
operators; the zonal and meridional coordinates
& and y are scaled using L'= YU/} where U* is the
characteristic horizontal velocity, whereas B 1is

Qubee+ 4+ U (£) sz + 2% = —U (£) A (E). (3)
The Cauchy problem for Eq. (5) was analyzed in
detail by the first of the present authors [4],
the mixed problem was considered by Robinson and
Gadgil [13]. Below we shall consider only peri-
odic solutions of this equation at specified

the Rossby parameter; y=1/(TW§ZFL where T* is
the characteristic time scale ¢; topographic
parameter g=h'L'Q'/H'U'=0 (1), where h* is the

amplitude of the projection of bottom topography,
H* is the mean ocean depth and Q* is the charac-
teristic value of the Coriolis parameter; fric-
tion parameter k= (L'/H'U')yvQ'/2, where v is the
kinematic coefficient of vertical eddy viscosity
in the bottom boundary layer; the pressure per-
trurbation scale is taken equal to p'Q'U’L‘, where
c* is the constant density.

0001-4370/83/2106-0003$18.00/1

684

periodic function U(¢), U(f+2n)=U(f) which means
that the period in dimensional variables is equal
to 2aT"

Results are interpreted best in terms of
streamlines. For the streamline which asympto-
tically approaches the x axis upstream, we have
from (2) that ——L/U)y4—o¢(xcosa—-ysh1a,t)=(x In
the particular case of meridional isobaths (¢ = Q)



we obtain in explicit form

y=oy(x, /U (1) (6)

The solution of Eq. (5) is most conveniently
expressed in terms of Green's function:

P& = \GE—~8 i de,

-0

which satisfies the equation

2”0;—,:‘*‘0'%—U(f)G-;E—i—Q‘/.Gg:—U(f)(S(E) (7)
and conditions of decay at infinity; here §(%) is
the Dirac delta function.

Construction of the formal periodic solution
Representing Green's function in the form of the
Fourier integral

0
2

! = e
— G o, e 3 dm,
2,

-x

Gt

tr =

(8)

we obtain from Eq.
for the transform (;

(7) the following expression

2uG, +- QA-I—L(——!——-U t»w, G - (9)

L

—iUit)yow

We first consider the case of long-period
fluctuations of the velocity of undisturbed flow,
when n<l. From Eq. (9) we have approximately

G=U()/U(1)o*+2xnon—I,
whence it follows

= - ————————9_______('3) cO eV sin 15‘/m/U {{n,
VU (1) — »F .

N 2 (10)

-

G = — VQ :)fb(”([_) et sz Y ud = U U t),
’ 0<< U< x? (11)
_“577£%g%6758-m-q1lw~cznc U<0, (12)
where §(t) is a unit Heaviside function. The re-

sultant solutions have the same form as in the
case of the steady-state problem (U = const), but
with parametric time dependence. 1In the absence
of friction (x=0) and for a ¢ shaped meridional
range (a=0) the form of the perturbed flow is,
according to Eq. (6), given by the expressions

_ ab (x)
VU@
exp(— %'V =T,

sinix/YU i,

U>0
(13)
U <0,

_9
2 = U (b

In the easterly flow (U(f)>0) a "leeward"
Rossby wave forms behind the ridge; the length
and amplitude of this wave change respectively
in direct and inverse proportion to YU({); the
flow upstream of the ridge is undisturbed. In
westerly flow (U({)<0) the perturbations are
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symmetric relative to the ridge, decaying expo-
nentially with distance from it. The maximum
shift of the streamlines at ¥=0 is inversely
proportional to y—U({).

In the general case the periodic solution
(with period 27) of Eq. (9) is

t
= 1 2uw + i |
G= ' Eitdi—\ E ) }
2000 { L) }1-5(2«:)}' ndr [ mdr]"' He
where
] t
Elt»=exp{—3—[2xt+i(—f——mStt.»\)l}, S|zr=5U(rydr.
2“ ‘\(D ’ FAR W P

The method of perturbations for oscillating

flow. Let
U(t)y=Us+ef (1), (14)
ant |
where |[(hdf=0, 0<e<</ and U,= %1, respective-
ly foruthe easterly and westerly flows. Then
Siti = Uit +eFit, Fiiv= fﬂT)dT, here Fi0) = F(2n)=0.

0
Expanding the exponents in a power series of small
parameter £, we can easily obtain

G =Y

-

==

\m?}
Qi‘ - (15)

2u m!
where

G, = U, U+ 2ixw — 1,

2
— 2ixw) ]1 * E ' Fi _ RLE
2E D { \ WO [FiT — Feh)"dt 4

Eo (20— 1
14

+ \'Eoir,>[Ftrl — Fy'd

v
0

E,(fy = exp {—;—[Q'A — 1 (—1— — (oU(,”} .
1 Cw /

5 B (__ im)'“ha ([

ar

}, m>1,

The integrals are easily evaluated at f(t) =const,
which corresponds to 7{t) = sin ¢. Since

»

| Ej(tyisinT — sint"dti= Ey(T) @uiT, b, m> 1,

where always ¢, (t1+2x, {) =¢n(1, ), it can be shown
that
_ ! . me3 S
G, =" 2(1—-mxm) Pm (L, 8), m>1.
u

In particular, for m = 1 we have

G — 2u (I — 2ixw) [(1 — 0?l/y — 2inw) cost — 2pwisin {]
! (0 + 2ine — 1) [{w2y + 2ixw — 1)? — 4p?w?]

Inverting the Fourier transform, we obtain

Gt§,t)=60(§)+——61|§ f) +O(( “)’).



We write the results separately for the easterly
and westerly flows.

= GE e sin RE

nv

a)U,=1: Gyd)

Gy 1E, b ———O(“;J{e—” fcoth - -é— stg)smt-{-
\ /

-}—%—e"("”"-)ﬁmlcosu — W py & (B — 1)sinit —

— 1w .U1‘3']"‘%e“(”ﬂh)é[zﬁllcos'l-{—ml — g+

4By — )sinet =iy — .ll'§=1}, (16)
where
== Vl - Kza Al ‘I—' xp‘l - “‘xl p‘i + ‘K’f’
By = p + wuyiui 4 x4,
ity %
(M) = VT = A g =l
Ay 2

here conditions M,>p and %=%, are satisfied
everywhere, and equality is attained at x=x,=0.

b) Uy = 1 Gy = o= e,
2Q
G[ 'E’ [ o= — _15— ‘__/_ -+ 1 )c(u:w; Sil’l[ —_ _‘l)_e(x:m)% e
< [AycOS it +—1u j:‘gu§-4~ing:1rsh1nt—%1ptj:}Q)Eﬂ,
<0, (17)
where

(1) =V T = e = e e =)
Ko 2

here %x<<x. and W==|L.
In the particular case of absence of fric-

tion, the above formulas become:

nt— cosi u § sinf — ug) —

e

)

sin pfacos4t—-p;q,
PL

=Y+ >p.
v) Uy=—1; G, ,=_31§\

Gy

where now w,"

cr (3

g
%;\eﬁlant-—

(1= ;—)sm it i = p“”;g)], £ 0

at u>l,u“”—Vu——l<p,and

1

Gl(g,tlr-': x —_ 2

(o)E1
{rMmu—e2 qu+u@$

=0

are

;%;cos(t-+ ug)]},
2

atLHilx‘“—VL—p
Qualitative analysis of
Asymptotic expansion (15) is

Green's function.
not uniformly
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Behavior of Green's function for

the easterly flow without friction at
different times. The solid curve cor-
responds to the approximate unsteady-

. & o
state solution G=ﬂ?+;;G\ in the case of

u=1. e=05 the dashed curve corresponds

to the steady-state solution d=a..

suitable with respect to parameter u, and is
valid only at e<2u. The case of excessively
small ¢ is of little interest and it hence should
be assumed that at least pw=0(l) (the approximate
solutions at pu< 1 are defined by Eqs. (10)-(12)).
This imposes restrictions on the possible periods
2nT" of fluctuations of- the main flow. Setting
10 cm/sec, Bp=2-1 0-3/cm-sec and o = 0, we ob-
tain from Eq. (4) the estimate 2n7“<:n/VBL/-22~-
106 sec ~ 25 days, which is close to the synoptic
period.

It follows from Eq. (16) that no perturba-
tions are ever present upstream of the obstacle
in easterly flow, whereas downstream it is com-—
posed of a set of standing and modulated traveling
waves.

The figure deplcts the behavior of G=G,(x)+

‘:G (x, ) at »=0, p= 1, ande =1/2 for easterly flow
as compared with the steady-state solution G,(x)
(dashed curve) each one quarter of the period at
times =0, n/2, n, and 3n/2. Even if a rather high
value of ¢ is assumed, the differences are rela-
tively moderate. This means that at u>e/2 the
streamlines can be calculated from the approxi-
mate formula —U(f)y+oy,(E) =0, where ,(E) is

the solution of the steady-state problem. At a =
0 we obtain for the streamlines
Y= — a8 (x) sinx

v U

y=
y U0



i.e., the amplitude of the virtually standing
wave varies in inverse proportion to the velocity
of unperturbed flow (compare with Eq. (13) for
small u).

It is interesting to note that in the second
approximation, G,(§, ), the expression for which
1s not presented due to its cumbersomeness, there
appears the steady-state term 0(%)sing as a re-
sult of interaction between different modes for
even approximations in equation (7) with variable
coefficients.

In the westerly flow modulated traveling
waves appear both down and upstream. The ampli-
tude of their modulation in the case of »=0 in-
creases beyond bounds as u-l (p,'”—0, %.,”—0) and
no bound periodic solutions exist at u = 1. An
analogous resonant phenomenon occurs also for
G.(E ¢) at u = 1/2. Apparently, this points to
instability of the westerly flows at 0<p<lI.

Possible applications. It appears to us
that the above model can be useful for analyzing
features in the time variability of leeward Ross-
by waves, forming in powerful zonal flows, cross-
ing bottom ridges and troughs in their path. The
antarctic circumpolar current (ACC) is a classi-
cal example of such a flow. Although there is
still no concensus concerning the spatial struc-
ture of the ACC, according to studies by Ganson
et al. [2] and Sarukhanyan [7], which, in our
opinion are most representative, it is an easter-
ly current, present in virtually the entire layer
of water from the surface to the bottom and hav-
ing (at least 200 m below the surface) a monoton-
ically decreasing velocity profile. Unfortunate-
ly, the currently available information on the time
variability of ACC are very scarce. Thus, Ivanov
[3] and Savchenko et al. [6] suggest that the
year—-to-year variability of the flow rate in the
ACC 1is insignificant, whereas Treshnikov et al.
[8] estimate its multi-annual variability at 20
percent of the mean. Analysis of the charts of
dynamic topography from data of approximately
1000 hydrological stations of various expeditions
in the Drake Passage [10] yields an estimate of
10 to 15 percent for changes in the flow rate.
According to Ivanov [3], who used the data of the
Discovery II expedition in 1938-1939, seasonal
variations in the flow rate in the ACC along 20°E
comprise approximately 30 percent. Finally,
Vladimirov and Savchenko [1] note statistically
steady fluctuations of the time variation in
current velocity components along 132°E at all
depths with a period of 2 to 3 days; the short-
period variability of surface circulation in the
region of 160°E is pointed out by Moroz [5].

Judging by the above data, the velocities of
the ACC undergo time variations at different
scales—from several days to several years, how-
ever, they as a rule are small. This justifies
the use of simplifications of the analytic model,
based on (14).

In conclusion the authors wish to thank P.
Yu. Sal'nikov, who performed the illustrative
calculations.
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