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A numerical quasigeostrophic model is proposed for the evolution of eddy dis-
turbances in a two-layer ocean based on the use of the method of contour dynamics.
A detailed study is carried out for the case of an axially symmetric eddyon the Q-

plane.

The numerical experiment supports the conclusions of linear stability anal-

ysis, and makes it possible to follow the linear stage in the evolution of the sys-
tem, which breaks down into two eddies with inclined axes diverging to opposite

sides.

Introduction. The method of contour dynamics
(MCD) [1] which originated as a generalization of
the "water bag' model developed for plasma theory
[2], in recent years has been applied in increas~
ingly new ways to varilous oceanological problems
[3-6). A generalization of MCD to the case of a
quasi-geostrophic model for an ocean continuously
stratified along the vertical has been given in
{6]. A problem arises here which is related to a
singularity in the tangential velocity component
on the contours that separate regions with con-
stant values for the potential eddy. This causes
the computational algorithm that has been proposed
to be rather sensitive to errors in the approxima-
tion. The singularity can be eliminated by chang-
ing from continuous stratification while at the
same time preserving the important physical mech-
anisms of the system. As Pedlosky [7] has noted,
"baroclinic effects can often be studied with re-
markable simplicity in multilayered models."

In this paper MCD 1s applied to a quasigeo-
strophilc model of a two-layer ocean with a rigid
cap at the surface and a rough bottom, taking the
B-effect into account. As an example we consider
the problem of a baroclinic instability for an
axially symmetric eddy on the Q-plane with a hori-
zontal bottom, where the motion is initiated by a
piecewise-constant distribution for the potential
vorticity in the layers. The conclusions of the
linear stability analysis concerning the predomi-~
nant azimuthal modes for the disturbances are con-
firmed by the numerical experiment, which also
makes it possible to follow the nonlinear stage
in the development of eddy instability, as a re-
sult of which the latter breaks up into two eddies
with inclined axes, diverging to opposite sides
from the common center of the system.

The two-layer MCD model, We consider a two-
layer unbounded ocean on the beta plane with a
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rigid cap at the surface and a rough bottom, whose
relative elevation is on the order of the Rossby
number e=U"/Q'L*, where the asterisks denote char-
acteristic values for the velocity, Coriolis param-
eter and the horizontal dimension. Iu dimension-
less variables and in the quasigeostrophic approxi-
mation the conservation equations for the potential
eddies have the form [7]

dll/di=0, (=1, 2, (1)
where the subscripts 1 and 2 pertain to the upper
and lower layers and d/di=0/d{-+ud/0x+vd/dy. The
variable parts of the potential eddies are equal to
II,=Ap,+tby+t/d and II,=Ap.,+by+(ch+{)/(1-—d). Here
h(xz, y) and g(x, y, t) are the elevations for bot-
tom relief and the interface which correspond to
the scales h* and e(Hl + HZ)’ and the following

dimensionless parameters are also introduced: the
relative thickness of the upper layers is d =
H,/(H+H;), the planetary one is b=BL*/U*, and
the topographic one 1s o=h'/g(H,+H,). The pres-
sures in the layers are related by the dynamic
equation

E=F(p:—pi), (2)
where the Froude number is expressed in terms of
the inner radius of curvature R, = [g(pa—pi)H H,/

puQ*(H\+H,) 1" according to the equation F=4k*(1-—d)d,
ke L'/Ra
Introducing the barotropic stream function
p=dp,+(1—d)p,, from (2) we have
po=yp—{1—d) (L/F). py=p+d(L/F). (3
In order to apply the MCD, it is sufficilent to as-
sume that the II; are plecewise-coustant at the
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initial point in time; because of the conservation
laws (l) this property also becomes valid at any
succeeding time. For simplicity we assume that
the Hi are different from zero in the singly con-

nected regions Si with boundaries Ci'
We use WO and CO to denote the general solu-

tions of the equations AYy=-—ch—by, AL—k%=
—oFhf(1—d). It is easily shown that

s g )=+ T {§ G(R)dEdn— (1 —d) p,

Sy
Py (xi Y t) = Pay + Hz (‘Y G (R) dng] + dp,
SI
pix,u, 1) =T, {{ G (R)dtan —T1, ({6 (R) didn,
Sy S

where the pressures determining the "external”
field in the layers py(¥, vy, f) are expressed in
terms of wo and %o according to Egqs. (3), and

©=G,—G 1is the difference between the Green's
functions for the Helmholtz and Laplace operators:
Go(R) = —(1/20) K, (kR), G(R)=(1/2n)In R, R=[(x—%)*+

(y+m)*]. Applying the equations w=-—p, and U;=pu,
and transforming the double integrals to contours,
we obtain equations for the velocity vectors in
the layers

Vi=V,+ l11"‘” —(1—4d)V,
V, =V, + LVE 4 dV, V=T,V — I,V

where we have used the notation

V= — 36 G(R)dp, V=—§ C(R)dp, dp=(dt,dn). (&)

The second contour integral in (4) does not have
singularities in the function under the integral
and thus it is easily realized numerically. The
first integral determines the velocity field in
the barotropic problem and also can be made regu-
lar [3]. .

The motion of the reference points on the
motion Ci determines the equations

dr(jr‘/dt=vm) [‘_—_"],21 j=1’N“ . (5)

.where rgt) is the radius vector of the Jj-th fixed

fluid particle on the 7i-th contour. Further ap~
plication of the MCD is standard and uses the
computational procedures described in [3-5].

Linear stability analysis. The sufficient
conditions that permit the application of the MCD
in two-layer quasigeostrophic models have been
formulated above. We give the example of a purely
zonal "external" field when 4 = h(z, y). In this
case

bo=—U 0y — b6 —0 [ h(n) (y—mpdn,

0

Ly=cy (e 4 ey (1) e -+ oF (28 (1 —d)x
x [S" eHi=f () dvy +- S e+ (1) dﬂ]-
~o0 ¥

In this way the dynamics of the eddy regimes Si can

be studied against the background of a given effect
(external flow, bottom relief of beta-effect).

When b=0=0 and C,(t)=C:(t)==0 we obtain a baro-
tropic current with velocity U(t) along the x-axis.
Next we consider the special case when the "exter-
nal" field is absent (y,==0), which is possible
only for a uniform bottom and when the beta-effect
disappears (h = 0, b = 0). Every auxiliary symmet-
ric solution of the problem with an arbitrary ra-
dial distribution for the potential eddies M;(r)

is steady-state. We shall formulate the spectral
problem determining the stability parameters for
these states, where in contrast to the traditional
approaches in [8] we will use essentially the in-
tegral form for the solutiom.

In the development of the instability let the
lines for constant potential eddies in polar coor-
dinates be defined by the equations r,=f(8, {; a)
for ¢ = 1 and 2 where the meaning of the parameter
o is clear from the condition a = f(8, 0; ). Be-
cause of the conservation laws (1) these lines
match the fluid contours so that their differential
equations of motion have the form

i+ Vg — V=0, i=1,2, (6)

where V(r) and V(B) are the radial and azimuthal
velocity projections. We use the method of small
perturbations, setting f(8, i a)=a + &(8, 1 a),
vhere |e/f<«a. Linearizing the equations (6) we
obtain

e+ (1) eV® — V" =0, i=1,2, (7
where the symbols (-) and (V) pertain to the unper-
turbed (ei = 0) and perturbed (linearly related to
Ei) sections of the velocity field which are calcu-

lated by the equations following from (3)
VO = 09/9r — ((1 — d)/F| 6Lsdr, V" =
— (1/r) 0%/38 4 [(1 — d)/Fr] 6%108,
Vi =0v/0r + ddisor, V' =

— (1/7) 3/00 — (d/Fr) 318, (8)

where
V4= (al, + (1 —d) 1,1 G (R) didn, (9)
E+T="F {§(, — I0,) Gy (R) didn. (10)

For the individual perturbation modes we use
e(0, £ a)=A;(a)exp. [im(6—yt)], mz=1. Transform-
ing (9) and (10) to the new integration variables
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(¢, B) using E=fi(g, t; P)cosg, and n = [(¢, §; B)sing
with J=[fs the Jacobilan of the transformation,
and taking into account that to within the accur-
acy of linear terms relative to €gs G/=pG+

0[GBe]/0B, after integration by parts with respect
to B and performing quadratures with respect to
the angle ¢, we obtain

T={ L@+ — DT, EIFTO B, QD

E=F g (11, (B) — 1, () 73" (7, B) B, (12)
F = — eimo-w § (4 ) 4, ) +
Lo (13)
(1 — & T (B) A BYIBT™ (7, B) dB,
f=—emomF (LEAG — (14

II; (B) A, ()1 BT (r, B) dB,

where

70 1,5 = Q(R)eimedg, TS (1, B)={ Gy(R)émedg,  (15)

with R=[r*+p*—2rfcos ¢]™.

The integrals in (15) are easily calculated
using the "multiplication theorems" in [9] for
¢ylindrical functions:

T (0, f) = — -~ { ()",
(Bray”,

{]m (ka) Km (kﬂ)v 24 < ﬁv

T (, By = —
(e B) I (4B) K (k), &> B.

Substituting (8) in (7) and taking (11)-(1l4) into
account, we have finally a homogeneous system of
integral equations

[—y+P(a)—(1—d) Q ()] A\ (@) —Mu () + (1—d) Nu (a) =0,
(16)
[—y+P(a)+dQ ()] As () ~=Mum () —dNum () =0,  (17)

P (@)= (16 {41, )+ (1 — ) T G,
Q@ =) {K, (ka) § 111, 0) — TL 8B/, 491 —
- h(ka)s (11, (B) — 1, (B) B, (4B)
=(l/a) °§ (AT B) A, () + (1= ) T B) Aq B BT (e, B)

Won )= (1) { [T B) Ay (B) — T B) Ay (I BT (e, B)

The spectral stability problem (16) and (17)
formulated is suitable for arbitrary Hl(r) and

Hz(r), but 1s especially convenient for pilecewlse-

constant distributions for the potential vorticity
that are characteristic of MCD. We consider the
simple case when

I, (r)y=I,H(a,—r), H,(r)szH('ag—r), (18)

where H(r) is the unitary Heaviside function. Writ-
ing Eqs. (16) and (17) with a = a and o = a, we

obtain a homogeneous system of four linear algebra-
ic equations relative to Ai(a), i, [=1, 2. Setting
the determinant equal to zero we find the disper-
sion equation

[(y—2X) (1—2Y)—Z] [y—S (@) ) [y—T (a.)}] =0, (19)
X =(4,) {S(a) + I, [(1 — &) T5" (a3, @) + 4T (a;, @,)1},
Y = () (T (ag) + T, (1 — d) T™ (@, @) + dT4™ (@, ay)1},
z=d(l —d)ILII, [T‘M) (4, @) — T(o’") (a1, ag))*,
S(a)=P(a)~(1—d)Q(a), T(a)=P(a)+dQ(a).

The roots of the quadratic trinomial in (19)
have the form y=X+Y+¥D and D = (X—Y)*+Z, so
therefore the instability condition is expressed
by the inequality D <0 from which, in particular,

it follows that this requires Hlnz < 0.

We have a four-parameter problem including
four determining ratios, namely for the depths d,
the characteristic horizontal dimension to the ra-
dius of deformation k, the potential eddies HI/HZ’

and the radii al/az. To simplify the analysis we
set a =a, = 1 and dI,+(1—d)I,=0, which excludes

the barotropic mode of motion at the initial time.
For the following it is convenient to use the rep-
resentation I} = (l—d)p, and MM,=—dpy with parame-

ter u. Then the problem reduces to an analysis’ of
the dispersion relation vym = (p/2){(1 — 2d)[L,(k) —
Ln(k)] * Y®un(k, d)}, where Ln=/In(k)K.(k) and

O (R, d) = (L (k) — L (R 1L, () —

(1 — 241 L ) — (2Im) d (1 —d)]. (20)

The function Lm(k) decreases monotonically

with increasing argument k and parameter m, with
La(k)—>'2m as k » 0 and Lan(k)~'ik as k + =, It
is clear that Yy = 0. For m > 2 we obtain the neu-

tral stability curves equating the second factor in
(20) to zero, from which d=(/;){l * [(*fim—L,) (*/.m—
Ln)]"} follows. The neutral stability curves con-
structed using this equation are shown in Fig. 1,
where the m-th mode becomes unstable above the m-th
curve. We denote the root of the equation L,(k)=
bm by km; asymptotically km v m, For k < kz =1,7

the condition is stable for all d.

Numerical experiment. The predictions of the
linear theory described above were verified by
means of numerical experiments based on MCD. One
of the examples is shown in Fig. 2, where the up-
per (I) and lower (II) series correspond to the
upper and lower layers, and the times are indicated
below. The numerical value for u was determined

—
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it follows that this requires Hlnz < 0.
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four determining ratios, namely for the depths d,
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dius of deformation k, the potential eddies Hl/HZ’
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linear theory described above were verified by
means of numerical experiments based on MCD. One
of the examples is shown in Fig. 2, where the up-
per (I) and lower (II) series correspond to the
upper and lower layers, and the times are indicated
below. The numerical value for u was determined

-—
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from the condition II,L,(k)=1 for which the azimu-
thal velocity on the upper contour is equal to
unity at ¢ = 0, At the initial time 40 uniformly
distributed reference points were used to approxi~
mate the circular contours. The equations of mo-
tion (5) were integrated by the Euler method with
8¢ = 0.1 for the time step calculation. After
each step the reference points were recalculated
in proportion to the increasing length for each
contour. In the experiment we took d = 0.2 and

k = 2.6 (Fig. 1, point), which corresponds to in-
stability for the mode with m = 2. The errors in
the approximation scheme and rounding off in the
computer were a contlinuous source of perturbations.
Under the influence of this "noise" the two-layer
eddy maintained its initial axially symmetric form
for a rather long time, but by t X 60 excitation
of the mode with m = 2 already clearly began to be
evident, which then rapidly went over to a nonlin-
ear Instability situation and led to the breakup
of the initial configuration into two dual-layer
eddies. Because of the horizontal shift in the
center of gravity for the potential vorticity in
the layers, each of the newly formed dual~layer
eddies behaves as a pair of singular geostrophic
eddies [10], both of them diverging to opposite
sides of the common center of the system. Similar
results had been obtained earlier by Ikeda [11]
who Integrated the equations for the dual-layer
model by a grid method with periodic boundary con-
ditions, assigning the initial disturbances for
the original axially symmetric eddy according to
the theoretical unstable mode. He considered a
fixed ratio of d = 0,3 for the thicknesses of the
layers, varying the Froude number (the parameter
k) and the ratio of the amplitudes for the veloei-
ties in the layers (the analog of our Hl/ HZ)' In

our problem the direction of dispersal for the
"pairs is set randomly (compare [5])). This is
borne out by numerical experiments in which vari-
ous small disturbances were set up for the axially
symmetric contours Ci at the initial time. When

the beta-effect is taken into account the direc-
tion becomes zonal, which apparently should lead
to the eastward propagation for the resulting mo-
don as occurred in the experiments in [12,13].
Conclusion., We present a brief summary of

the results, For instability in an axially sym-
metric two-layer eddy with constant potential vor-
ticity in the layers nl and Hz it 1s necessary to

satisfy the condition IL,II,<0. This requirement is
satisfied by eddies with a null barotropic mode

for which dII,+ (1—d)II,=0 and the bearers of con-
stant vorticity agree (a1 = az). The boundary for

stability is defined by the equation ®,(%, d)==0
in the plane of the parameters d and k. The ed-
dies are known to be stable when k < k2 = 1.7,

where L,(k)="'/,, the minimum stability occurring
at d = '. For any k and d from the region of
definition for these parameters satisfying the
condition ®,(k, d) <0, there is always a finite num-
ber of perturbation modes contained within the
interval 2<<m=<M, where ®,(k d)>=0. The number

Fig. 1. Neutral stability curves for indivi-

dual perturbation modes; the point corresponds

to parameters d = 0.2 and X = 2,6 in the nu-
merical experiment,

68088 T)
CTTeTdT

Fig. 2. Decay of an unstable two-layer eddy,

numerical experiment; dimensionless times are

shown beneath the corresponding boundaries for

regions of constant vorticity in the upper (I)
and lower (II) layers.

of unstable modes increases with increasing k and
decreases with increasing |d-Y%].

The first unstable mode is the one with m =2.
If this is a unitary unstable mode, during evolu-
tion the eddy breaks down into two individual ed-
dies with inclined axes diverging in opposite di-
rections similar to vortex pairs. We note that the
eddies with opposite rotation in different layers
with an inclined axis have actually been observed
in the ocean [l4],

An advantage of the MCD models, besides re-
ducing the dimensionality of the problem, is the
ease of interpretation and the clear manner for
representing the results. As a rule, analysis of
the stability of stationary states using these
models turns out to be clearer and more straight-
forward. This is supported by comparison with [11]
where similar conclusions were obtained by a more
complex and involved method. In our opinion this
shows the promising nature for applying MCD to
model a broad class of interesting and important
oceanological problems.
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