
IOP PUBLISHING FLUID DYNAMICS RESEARCH

Fluid Dyn. Res. 42 (2010) 045501 (31pp) doi:10.1088/0169-5983/42/4/045501

Baroclinic multipole formation from heton interaction

Mikhail A Sokolovskiy1 and Xavier J Carton2

1 Water Problems Institute of RAS, 3, Gubkina Street, 119333, Moscow, Russia
2 Laboratoire de Physique des Océans, UFR Sciences, UBO, 6 Av. Le Gorgeu,
29200 Brest, France

E-mail: sokol@aqua.laser.ru

Received 23 April 2009
Published 14 April 2010
Online at stacks.iop.org/FDR/42/045501

Communicated by Y Hayashi

Abstract
In a two-layer quasi-geostrophic model, the interaction between two opposite-
signed hetons (baroclinic vortex pairs) is studied analytically and numerically,
for singular and finite-area vortices.

For point vortices, using trilinear coordinates, it is shown that the possible
evolutions depend on the deformation radius Rd: for large Rd, the layers
decouple, vortices pair in each layer and their trajectories are open; for medium
Rd, the exchange of opposite-sign partners between layers becomes possible;
for small Rd, two other regimes appear: one where hetons remain unaltered
during their evolution but follow open trajectories, and one where hetons
occupy only a bounded subdomain of space at all times. Conditions for
invariant co-rotation of the heton pair are derived and analyzed.

Then, the nonlinear evolutions of finite-area heton pairs, with piecewise-
constant vorticity, are computed with contour dynamics. When the central
cyclonic vortex is initially aligned vertically, a transition occurs between three
nonlinear regimes as layer coupling increases: for weak coupling, the vortices
pair horizontally and drift away in opposite directions; for moderate layer
coupling, the core vortex splits into two parts, one of which remains as a tilted
columnar vortex at the center; for stronger layer coupling, each anticyclone
pairs with part of the cyclone in each layer, thus forming an L-shaped dipole,
a new coherent structure of two-layer flows. When the initial distance between
the central and satellite vortices is increased, the velocity shear at the center
decreases and the central vortex remains vertically aligned, thus forming a
Z-shaped tripole, also a newly observed vortex compound. Such tripoles also
compete with oscillating states, in which the core vortex periodically aligns
and tilts, a regime observed when layer coupling is moderate and as vortices
become closer in each layer. This Z-shaped tripole forms for various values of
stratification and of initial distances between vortices, and is therefore a robust
vortex compound in two-layer quasi-geostrophic flows.
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1. Introduction

Vortices are coherent structures that play a central role in many fluid flows, in nature or
in the laboratory. Two well-known examples of this role are two-dimensional turbulence
and planetary flows. In two-dimensional incompressible turbulence and in strongly rotating
stratified turbulence, vortex interactions have been associated with upscale energy transfer,
and the filaments resulting from these interactions materialize the downscale enstrophy
cascade (McWilliams 1984, 1989, 1990a, 1990b). In the atmosphere and oceans, models
and observations have established how efficient vortices are in carrying momentum, heat or
tracers across the dynamical barriers of intense jets (see Carton (2001) for a review). Vortices
also play a central role in the mixing of such tracers. This efficiency of vortices to carry or
mix fluids is related to their internal structure: vortices are intense, horizontal recirculation
motions that trap fluid in their core and mix them at their periphery; their internal motion
is much stronger than external advecting velocities; their lifetime is much longer than their
internal turnover period. The dual aspect of intense vorticity and of fluid trapping in the vortex
core is described by a single variable in stratified, rotating fluid models: potential vorticity.
Vortices are associated with a significant potential vorticity anomaly between their core and
their surrounding.

Vortices come in various shapes, associated with a monopolar or a multipolar distribution
of potential vorticity anomaly. The monopolar vortex has been historically studied for its
simplicity and ubiquity. Much theoretical, numerical and experimental work of the past 20
years has shown that monopolar vortices can be unstable in both homogeneous and rotating,
stratified fluids; this instability can form dipoles, tripoles and quadrupoles, in decreasing
order of frequency (e.g. Gryanik 1983a, 1983b, Kozlov and Makarov 1985, Pedlosky 1985,
Kozlov et al 1986, Flierl 1988, Helfrich and Send 1988, Carton and McWilliams 1989, 1996,
Polvani and Carton 1990, Orlandi and van Heijst 1992, Kozlov 1994, Morel and Carton 1994,
Sokolovskiy 1997a, 1997b, Carton and Corréard 1998, Corréard and Carton 1999, Baey and
Carton 2002, Jamaloodeen and Newton 2007, Reznik and Kizner 2007).

In a multilayer fluid, a specific dipole, consisting of a cyclone and an anticyclone lying
in different layers, is particularly important due to its ability to carry heat. This dipolar
structure, called a heton, was first introduced by Hogg and Stommel in 1985 to describe
a point vortex pair associated with a thermal anomaly. Indeed, under the geostrophic and
hydrostatic approximations, conventional for geophysical fluid dynamics (Pedlosky 1987), an
anticyclone in an upper layer or a cyclone in a lower layer induces a downward displacement
of the density interface between layers, and therefore a positive thermal anomaly. Conversely,
a negative thermal anomaly is created by reversing the vortex polarities. Now, the association
of two such vortices (with like-signed thermal anomalies) is able to self-advect when the
vortices are not vertically aligned. This ability to transport heat was the key issue described
by Hogg and Stommel (1985a) for point vortices. After this seminal paper, the notion of heton
was generalized to vortices with finite horizontal dimensions (in particular, vortex patches
with uniform potential vorticity).

Hetons are not purely theoretical constructions: they can form from unstable jets in
the deep ocean (Meacham 1991, Flierl et al 1999). Indeed, they have been observed south
of the Gulf Stream; they are composed of a Gulf Stream cold-core ring associated with
a Sargasso Sea water anticyclone. Hetons can also form from the instability of coastal
currents (Morel and McWilliams 2001, Chérubin et al 1997). Observations of Mediterranean
water eddies south and west of the Iberian Peninsula show that deep anticyclones (meddies)
can be associated with cyclones above or below them, thus forming warm or cold hetons
(Chérubin et al 1997, Takahashi and Masuda 1998, Paillet et al 2002). Observations and
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models have also shown that hetons can originate in the baroclinic instability of convective
columns (Legg and Marshall 1993). Hetons also represent vortex pairs under sea ice (Chao and
Shaw 1999a, 1999b, 2000, 2003), vortices resulting from the interaction of oceanic currents
with bottom topography (Sokolovskiy et al 2001) or tropical cyclones and hurricanes in
the atmosphere (Pedlosky 1985, Pullin 1992, Flatau et al 1994, Tevs 1999). In summary,
many observations of oceanic and atmospheric vortices confirm the existence of hetons.
Hetons can also form from horizontal and vertical vortex interactions, such as merger and
alignment, when the original vortices are composed of opposite-signed poles of potential
vorticity (Verron et al 1990, Verron and Valcke 1994, Corréard and Carton 1998).

Previous studies have shown that heton interactions can scatter these dipoles or form
new multipoles (Hogg and Stommel 1985b, Valcke and Verron 1993, Sokolovskiy and
Verron 2000a, 2000b, 2002a, 2002b, 2004, 2006, Gryanik et al 2006, Kizner 2006). But none
of these studies have considered the interaction of a cold and a warm heton. This configuration
is not only particularly important for oceanic vortices near the Iberian Peninsula, but also, in
view of vertical vortex alignment, an essential process in rotating stratified turbulence.

Indeed, a previous study (Corréard and Carton 1998) has investigated the influence of
the initial distribution of potential vorticity anomalies on the alignment process. This study
considered two vortices initially with uniform relative vorticity (the so-called RVI (relative
vorticity intensity) conditions). Each vortex was lying in a separate layer. The corresponding
potential vorticity distribution is that of two opposite-signed hetons, vertically asymmetric
and with non-uniform potential vorticity distribution. This study showed that for strong layer
coupling, initially close vortices align and form a baroclinic tripole (a central, vertically
aligned, vortex column, with one opposite-signed satellite in each layer, the whole structure
being Z-shaped) and initially distant vortices diverge as two hetons. On the contrary, for
weaker layer coupling, initially close vortices oscillate around the center of the plane and
more distant vortices end up as scattering horizontal dipoles.

Considering that (a) warm and cold hetons co-exist in the ocean and can interact, (b) the
alignment of RVI vortices allows the interaction of warm and cold hetons, (c) the interaction
of two opposite-signed (and symmetrical) hetons with zero linear momentum is likely to
produce more complex baroclinic multipoles (in particular rotating structures) and (d) the
knowledge and classification of baroclinic multipoles, contrary to their 2D counterparts, are
far from complete, the present study addresses the interaction between two opposite-signed
hetons with focus on nonlinear evolution and baroclinic multipole formation. This evolution is
studied here by analytical and numerical methods when the hetons are point-like (section 3),
and by a contour-dynamics approach for finite-core hetons (section 4). Conclusions are drawn
on how the results of this study shed new light on previous observations.

2. Mathematical and physical framework

When flows of stratified, rotating, incompressible fluid have small Rossby number and order
unity Burger number, the quasi-geostrophic approximation is valid. In the absence of forcing
and dissipation, two-layer quasi-geostrophic flows are governed by the potential vorticity
equation:

∂t q j + J (ψ j , q j )= 0, (1)

where

q j = ∇
2ψ j + F j (ψk −ψ j )+ f0
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is potential vorticity in layer j = 1, 2 (top, bottom) and k = 3 − j . The first term is relative
vorticity of the vortices, the second term is vorticity associated with vertical stretching of
water columns, and the third term is ambient vorticity (due to global rotation), also called
Coriolis parameter. The symbols ∇

2 and J are the 2D operators of Laplace and Jacobi,
respectively; the layerwise streamfunction is ψ j , and F j = f 2

0 /g′h j are the layer coupling
coefficients. The Coriolis parameter f0 is constant. The reduced gravity g′

= g1ρ/ρ is much
smaller than the usual gravity because of the weak relative density difference between layers:
1ρ = ρ2 − ρ1 � ρ1. The thickness of layer j at rest is h j and h = h1 + h2 is the total fluid
thickness. The internal radius of deformation is defined by

Rd =
√

g′h1h2/( f0

√
h).

For convenience, we write γ = 1/Rd. Finally, the horizontal velocity components are

u j = −
∂ψ j

∂y
, v j =

∂ψ j

∂x
. (2)

In the present study, two idealizations of potential vorticity distributions will be used:

• point-like vortices with constant intensity καj ,

q j (x, y)=

∑
α

καj δ(x − xαj )δ(y − yαj ),

so that, strictly speaking, each point vortex of the j th layer represents a vertical vortex
segment between the quasi-horizontal boundaries of this layer (see figure 1), and

• finite-area, piecewise-constant vortices with constant potential vorticity qαj in the finite
domains Sαj bounded by contours Cα

j ,

q j (x, y)=

∑
α

qαj 2(S
α
j ),

where 2(Sαj ) is the step function, equal to 1 inside and 0 outside the domain Sαj .

In each case, two vortices with equal and opposite polarity lie in each layer. Here, the lower
index refers to layer number ( j = 1, 2) and the upper index to vortex number in the layer.

Under these assumptions, the streamfunction corresponding to finite-core vortices is

ψ j (x, y)=
2∑
α=1

h j q
α
j

∮
Cα

j

w
[
W (r)+

h3− j

h j
W0(r)

]
dν+

2∑
α=1

h3− j q
α
3− j

∮
Cα

3− j

w[W (r)− W0(r)] dν.

(3)

In (3), the notations

w =
(x ′

− x)∂ y′/∂ν− (y′
− y)∂x ′/∂ν

r2
,

W =
r2

4π

(
ln r −

1

2

)
, W0 =

1

2πγ 2
[γ r K1(γ r)− 1]

are introduced, and ν is a linear parameter measured counterclockwise along each contour
Cα

j ; K1 here, and I1 in (6), are the modified Bessel functions of the second kind and first kind,
respectively.

The velocity of a fluid particle with label n on contour Cα
j of any finite-area piecewise-

constant vortex is obtained by solving the equations

d

dt

(
xαj

)
n
=

(
uαj

)
n
,

d

dt

(
yαj

)
n
=

(
vαj

)
n
, (4)
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with the initial conditions

t = 0 :
(
xαj

)
n
=

(
xαj

)0
n
,

(
yαj

)
n
=

(
yαj

)0
n
. (5)

Here, j = 1, 2; α = 1, 2, and n = 1, . . . , Nα
j . The expressions for velocities on the right-hand

sides of (4) are obtained after substitution of (3) into (2).
Equations (4) and (5) are the basis for a two-layer modification of the contour

dynamics method, including contour surgery (see Kozlov et al 1986, Makarov 1991,
Sokolovskiy 1997a, 1997b; Sokolovskiy and Verron 2000a). The system of ordinary
differential equations (4) and (5) is solved with a fourth-order Runge–Kutta method using
the Gill ‘optimum’ formula for timestepping (Hairer et al 1987). An initial number of nodes
Nα

j = 120 is typically used for a circle of unit radius ( j = 1, 2 and α = 1, 2). During the
calculation, this number increases proportionally to the length of the contour; new nodes
are uniformly redistributed along the contour. The approximation, interpolation, numerical
differentiation and grid integration procedures are carried out using periodic cubic spline
techniques (Kozlov 1983). Makarov’s algorithm (1991) of contour surgery allows vorticity
filament separation and contour reconnection when vortices with the same potential vorticity
values approach each other. Thus, this method for the calculation of finite-time, finite-
amplitude evolution of vortices leads to minimal numerical dissipation, and has been shown
to compare well to spectral or gridded methods (Corréard and Carton 1999).

In numerical calculations, the non-dimensional time unit is half a rotation period on the
unit radius contour for a heton with vertical axis. This requirement implies a condition on the
choice of constants qαj :

|qαj | =

(
1 + h3− j/h j

)
I1(γ )K1(γ )

2π
. (6)

In the point vortex limit
lim
Sαj →0

qαj →∞

qαj Sαj = καj ,

point vortex motion obeys equations derived from (2) and (3):

ẋαj = −
h j

2π

{
2∑

β = 1

β 6= α

κ
β

j

yαj − yβj(
rαβj j

)2

[
1 +

h3− j

h j
γ rαβj j K1

(
γ rαβj j

)]

+
2∑

β=1

κ
β

3− j

h3− j

h j

yαj − yβ3− j(
rαβj (3− j)

)2

[
1 − γ rαβj (3− j)K1

(
γ rαβj (3− j)

)]}
, (7)

ẏαj =
h j

2π

{
2∑
β=1
β 6=α

κ
β

j

xαj − xβj(
rαβj j

)2

[
1 +

h3− j

h j
γ rαβj j K1

(
γ rαβj j

)]

+
2∑

β=1

κ
β

3− j

h3− j

h j

xαj − xβ3− j(
rαβj (3− j)

)2

[
1 − γ rαβj (3− j)K1

(
γ rαβj (3− j)

)]}
. (8)

Here, rαβi j =

√(
xαi − xβj

)2
+

(
yαi − yβj

)2
. The trajectories of point vortices are integrated with

the fourth-order Runge–Kutta method.
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Figure 1. Vertical section of the general colinear configuration under study. Initial positions and
strengths of vortices (vortex lines) are indicated; the lower index refers to the vortex layer, and
the upper index to its number in the layer. Thick solid lines correspond to the vortex lines in the
upper layer, and dashed ones to the vortex lines in the lower layer. Each vortex generates a local
deformation of the density interface related to its sign. Note that the vortices can also have a finite
extent (with radius R in section 4 of the study). The thin vertical line is the center of the plane.

When choosing a time scale for point vortices, we use the ‘equivalence’ principle of
Polvani (1991). This principle states that the azimuthal velocity along a unit circle, induced
by point vortex with strength καj , is equal to the velocity along the contour of the finite-core
vortex with potential vorticity (6) and of the same radius:

καj =
2π I1(γ )

γ qαj
.

3. Point vortex modeling

We study the interactions between two opposite-signed point vortex hetons in a two-layer
fluid. Figure 1 shows the initial vortex configuration in the general case (with vertical
tilt). We recall that, according to the Hogg and Stommel (1985a) classification, the vortex
configurations that we may obtain correspond to hetons

(2
1

) (1
2

)
and

(1
1

) (2
2

)
, antihetons

(1
1

) (1
2

)
and

(2
1

) (2
2

)
, and horizontal dipoles

(2
1

) (1
1

)
and

(1
2

) (2
2

)
. If the polarity of the vortices is that

shown in figure 1, the heton
(2

1

) (1
2

)
is hot and the heton

(1
1

) (2
2

)
is cold. If a = b, we have

two hetons with ‘vertical axes’; if a 6= b, the hetons have ‘tilted axes’. More complex vortex
compounds were not classified by Hogg and Stommel. The vortex strengths are

κ1
1 = κ1

2 = −κ2
1 = −κ2

2 = κ > 0. (9)

All vortex positions are calculated with respect to the center of the plane. The symmetry of
the problem (with h1 = h2 = 1/2) ensures that at all times

x1
1 = −x1

2 , y1
1 = −y1

2 , x2
1 = −x2

2 , y2
1 = −y2

2 . (10)

At t = 0, one has

x1
1 = a, x2

2 = b, y1
1 = y2

1 = 0. (11)
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To determine the dominant mechanism in the interaction between vortices (intra-layer or inter-
layer ones), parameters a, b and γ obviously play a key role.

3.1. Hamiltonian, integral invariants and particular solutions

The Hamiltonian of the problem is

H = −
1

2π

2∑
j=1

h j

{
2∑

α,β=1
β 6=α

καj κ
β

j

[
ln rαβj j −

h3− j

h j
K0

(
γ rαβj j

)]

+
2∑

α,β=1

h3− j

h j
καj κ

β

3− j

[
ln rαβj (3− j) + K0

(
γ rαβj (3− j)

)]}
. (12)

The initial prescription of the vortex strengths and positions provides the value of the
Hamiltonian. The equations of motion for each point vortex are written as

q̇αj =
∂H

∂pαj
= J (qαj , H), ṗαj = −

∂H

∂qαj
= J (pαj , H),

with qαj = xαj the generalized coordinates and pαj = xαj κ
α
j /2 the conjugate generalized

momenta.
The other integral invariants are volume-integrated potential vorticity, the two

components of linear momentum and angular momentum:

Q =

2∑
j=1

h j

2∑
α=1

καj , Px =

2∑
j=1

h j

2∑
α=1

καj xαj , Py =

2∑
j=1

h j

2∑
α=1

καj yαj ,

M =

2∑
j=1

h j

2∑
α=1

καj

[
(xαj )

2 + (yαj )
2
]
.

With our choice of conditions (9)–(11),

Q = Px = Py = 0 and M = κ(a2
− b2). (13)

Because of (13), a reduction to a three-vortex problem is possible, and the motion is integrable
(Aref and Stremler 1999, Sokolovskiy and Verron 2000b). It can be analyzed with the use of
trilinear coordinates (Aref and Stremler 1999).

But, first, we provide particular solutions:

• When a = b, we have two vertical hetons of opposite sign (or two antihetons if vertical
symmetry is imposed). This interaction (exchange by partners between hetons) was
studied by Hogg and Stommel (1985a).

• If a = b and vertical symmetry of the vortex strength are imposed, quasi-barotropic vortex
pairs move along the y-axis with velocity

ẏ2
1 = ẏ2

2 = ẏ1
1 = ẏ2

2 = −
κγ

2π
K1(2γ a).
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Figure 2. 1—the graphic solution of dispersion equation (14), and 2—angular velocity (15) for
the colinear vortex structure, with �= 4πω (see the value of ω in the text). Vertical dashed lines
at A = A∗ and A = A∗∗ correspond to extrema of both curves. The dashed line A = B is the
asymptote of the dispersion relation at large A.

• When the dispersion equation

B2 + A2

2AB
= (B + A)K1(B + A)+ (B − A)K1(B − A)+ AK1(2B)+ BK1(2A) (14)

is satisfied (where A = γ a and B = γ b), a colinear configuration of four vortices rotates
around the plane center with constant angular velocity

ω =
κγ 2

4π A

[
B2 + 3A2

2A(B2 − A2)
− K1(B + A)− K1(2A)− K1(B − A)

]
. (15)

In (14), B = Bmin at A = A∗
= 0.6026, and, asymptotically, B ∼ A at A � 1 and B → ∞ at

A � 1. In (15), ω = ωmax at A = A∗∗
= 0.3726, and, asymptotically, ω→ 0 at A � 1 and at

A � 1.
Relation (14) between A and B and the distribution of angular velocity along the

dispersion curve are plotted in figure 2. Numerical experiments show that stable solutions
for B(A) and �(A) (where �= 4πω) exist only for A < A∗∗. Further theoretical study will
be required to explain this specific value of A, but a simple physical argument justifying
this result is the following: since M = (κ/γ 2)(A2

− B2), vortex states with A > A∗∗ have the
largest angular momentum for a given angular velocity (note that the same angular velocity ω
can be reached for both A < A∗∗ and A > A∗∗). Therefore, larger radial displacements from
the steady positions are allowed for A > A∗∗, when the vortex array is perturbed, all the more
so as ω then decreases with A. Therefore, stability should be minimal in this case.
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Asymptotic regimes for strong and weak stratifications, respectively, can be obtained:

• When γ � 1 and a, b = O(1), equations (7) and (8) give us

ẋαj ∼
κ(−1)3−α

2π
×

yαj − y3−α
j(

rα(3−α)
j j

)2 , ẏαj ∼
κ(−1)2−α

2π
×

xαj − x3−α
j(

rα(3−α)
j j

)2 .

Obviously, only intra-layer interactions take place then. With our choice of initial
conditions, vortices translate as horizontal pairs along the y-axis, in opposite directions
for the upper and lower layers; their velocities are

ẏ1
1 = ẏ2

1 = −ẏ1
2 = −ẏ2

2 = −
κ

2π(a + b)
.

• When γ � 1 and a, b = O(1), we have

ẋαj ∼ −
κ

4π

[
(−1)3−α

yαj − y3−α
j(

rα(3−α)
j j

)2 +
2∑

β=1

(−1)3−β
yαj − yβ3− j(
rαβj (3− j)

)2

]
,

ẏαj ∼
κ

4π

[
(−1)3−α

xαj − x3−α
j(

rα(3−α)
j j

)2 +
2∑

β=1

(−1)3−β
xαj − xβ3− j(
rαβj (3− j)

)2

]
,

and then the interaction between opposite-layer vortices is of ‘barotropic’ character.

3.2. Point vortex trajectories in the general case

A complete analysis of the symmetrical point vortex system can be conducted in terms of the
trilinear coordinates t1, t2, t3 such that t1 + t2 + t3 = 3, where

t1 =
3κ

M
(r11

12 )
2, t2 = −

3κ

M
(r21

12 )
2, t3 = −

3κ

M
(r12

11 )
2.

The Hamiltonian can be expressed in these coordinates, within the ‘physical region’, where
the triangle inequality for distances r11

12 , r21
12 and r12

11 is fulfilled. In terms of t j , the ‘physical
region’ is defined by

(t1)
2 + (t2)

2 + (t3)
2 6 2(t1t2 − t1t3 − t2t3)

or, after simple transformations,

t2t3 6 9/4.

Coordinates t1, t2 and t3 are counted along unit vectors t1, t2 and t3 normal to legs of an
equilateral triangle with height equal to 3 (see figure 3).

In figure 3, isolines of the Hamiltonian are plotted in the reference frame of the t j ; this
is the phase portrait of the point vortex system (energy must be conserved along trajectories).
For any given triplet of these coordinates, the Hamiltonian depends nevertheless on γ .

For weakly coupled layers (γ = 0.1), intra-layer vortex interactions are dominant and
vortices will couple horizontally. Indeed, we find that vortices pair as horizontal dipoles that
move along lines of constant t3 (see figure 3(a); horizontal dipoles are called HD below); this
regime of horizontal dipole scattering

(1
1

) (2
1

)
and

(1
2

) (2
2

)
is labeled {1} in this figure.
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(a) (b)

(c) (d)

Figure 3. Phase portraits of the four-vortex system in the (t1, t2, t3) trilinear coordinate system for
M = −4 and (a) γ = 0.1, (b) γ = 0.5, (c) γ = 1.0 and (d) γ = 4.0. The ‘non-physical’ parts of the
phase plane are blackened. Thick lines represent separatrices, which separate the different types
of vortex interactions. The four regimes are detailed in the text.

For medium-strength layer coupling (γ = 0.5), inter-layer interactions gain efficiency.
If initially t3 is relatively large (i.e. for horizontally distant vortices), a new regime appears
where a transition between horizontal dipoles and vertically tilted dipoles (called TD) can
occur along a trajectory (see figure 3(b)). This regime of vortex scattering via non-aligned
pairs, labeled {4}, can be schematized as(
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Note that vortex configurations for motions of this type do not contain a colinear structure, and
therefore cannot be characterized by initial conditions (11). Motions of type {4} are illustrated
in figure 4.
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Figure 4. Vortex trajectories for motions of type {4} with γ = 0.5 and M = −4. The initial
positions of the vortices are marked by circles. Here and in all other figures displaying vortex
evolutions, polarities are indicated near each vortex at the initial moment. Arrows indicate the
direction of initial motion of vortices. Here and in figures 5–8, solid (dashed) lines correspond to
upper- (lower-) layer vortex trajectories.

When the layers are strongly coupled (γ = 1.0 or γ = 4.0), inter-layer vortex interactions
become dominant and vertically coupled vortex structures prevail. Then, two regimes appear:

• One where the vertically tilted dipoles remain coupled all along their trajectories (see
figure 3(c)). This regime of vortex scattering via hetons

(1
1

) (2
2

)
and

(2
1

) (1
2

)
is labeled {2}

in figure 3.
• One where all vortex trajectories are closed, contrary to the previous regimes (see

figure 3(d)). This regime is labeled {3} in figure 3. In this regime, vortices form antihetons(1
1

) (1
2

)
and

(2
1

) (2
2

)
, and follow trajectories inside a bounded subdomain, with different

average angular velocities. However, at the stationary elliptic point, on the boundary of
this region, condition (14) is fulfilled, and the vortex structure is colinear, in solid body
rotation at constant angular velocity (15). In this regime, t1 (the distance between like-
signed vortices in opposite layers) varies little—all the less so as layer coupling is intense.
For the largest values of γ , trajectories in regime {3} become more symmetrical in t2
and t3.

How this phase space description translates in physical space is now illustrated with
trajectories of point vortices.

In figure 5, trajectories of types {1} and {3} are shown for a = 0, b = 2 and for increasing
γ . Initially, all vortices are located along the x-axis, and the central ones,

(1
1

)
and

(1
2

)
, represent

an aligned antiheton with positive vortex intensities; the peripheral anticyclonic vortices
(2

1

)
and

(1
2

)
are located on the left-hand side and right-hand side, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Examples of vortex trajectories of type {1}—panels (a), (b), (c)—and of type {3}—
panels (d), (e), (f). All initial states are colinear ones, and parameters are a = 0, b = 2,M = −4
and (a) γ = 0.1, (b) γ = 0.9, (c) γ = 0.956 59, (d) γ = 0.956 60, (e) γ = 1.2 and (f) γ = 1.5. Here
and in figures 6–8, the intensities of the point vortices coincide with those shown in figure 1.

Clearly, for the same initial positions, there exists a critical value of stratification (here
γ = 0.956 59) for which trajectories change from open to closed (i.e. from regime {1} to
regime {3}). This is explained physically by the increasing influence of co-rotation (via layer
coupling) against translation (simple horizontal vortex coupling). Indeed, with the help of
the analytical formulae of asymptotic regimes (see the end of the previous subsection), one
notices that for small γ, the motion is translation along the y-axis, whereas for large γ , layer
coupling will induce a component of rotation in the motion of the vortex array. In between,
due to the conjugate effect of rotation and translation, the central vortices exhibit a complex
trajectory, which is quasi-periodic. The spatial domain occupied by this trajectory shrinks
with increasing γ .

Now, we detail this complex trajectory, and study its sensitivity to the initial position of
the central vortices. Figure 6 presents the trajectories, both in a fixed and in a rotating frame
of reference, of the vortex array for γ = 1, a = 0 and a = −0.04 (motions of type {3}). Due
to time periodicity of the motion in the rotating frame of reference, complex trajectories in
the fixed frame of reference can correspond to simple trajectories in the rotating frame of
reference (the latter are also called ‘choreography’; see Borisov and Mamaev 2005). Quasi-
periodicity or aperiodicity depends, in particular, on parameter a. Values of a corresponding
to stationary colinear vortex configurations can also be found, as will be shown now.

A scenario for the transition between a colinear stationary structure and non-colinear
structures is presented in figure 7. For the colinear structure (figure 7(a)), the dispersion
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(a) (b)

Figure 6. Vortex trajectories in a fixed frame of reference (1) and in a rotating frame of reference
(2) for motions of type {3} with γ = 1.0,M = −4 and (a) a = 0 and (b) a = −0.04. Angular
velocities for rotating frames are respectively ω = −0.000 0164 and ω = −0.000 016 65.

equation (11) is satisfied; in the four other cases (figures 7(b)–(e)), the dispersion equation
(11) has a small discrepancy. Here only the initial stage of vortex motion is illustrated. The
positions of the vortices at the initial and final (calculated) moments are linked by segments.
In the numerical experiments shown in figures 7(b)–(e), the disturbance of the stationary
configuration is obtained by changing parameter a from its equilibrium value a∗

= 0.346,
while other parameters are kept constant. A variation 1a = 0.023 of distance a is chosen for
the following reasons:

• At a = a∗ +1a (figure 7(b)) and at a = a∗
−1a (figure 7(d)), phase trajectories still

belong to regime {3} of closed type.
• However, at a = a∗ + 21a (figure 7(c)) and at a = a∗

− 21a (figure 7(e)), phase
trajectories are already located in regime {2} in the first case and in regime {1} in the
second case.

It is easy to see that with growing a, colinearity is violated because internal vortices
begin to move ahead of the external ones at the very first stage of the evolution (figure 7(b)).
This provides the conditions for shifting regime from the colinear vortex array to tilted point
hetons. Conversely, when a decreases, the external vortices run ahead (figure 7(d)), leading to
a transition to the regime of horizontally coupled vortices.

Figure 8 illustrates this transition even further. Vortex trajectories for the motion of type
{3} are shown in figures 8(b)–(d); the central one is the stationary colinear state, and the
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(a)

(b) (c)

(e)(d)

Figure 7. Transition between a colinear stationary structure and two horizontal dipoles or two
tilted dipoles (hetons) for γ = 1,M = −2.7703 and (a) a = 0.346, (b) a = 0.369, (c) a = 0.392,
(d) a = 0.323 and (e) a = 0.300.

lateral ones are the disturbed stationary states, which correspond nearly to the limit values of
the parameter a inside domain {3}. For each numerical experiment, the vortex configuration
performs 50 cycles with respect to the center of vorticity. Figures 8(a) and (e) display the
trajectories of types {1} and {2}, respectively. The values of a for the last two cases are
also located near the domain boundaries of the corresponding solutions. Before entering
a scattering regime, the vortices have performed more than two cycles with respect to the
center of vorticity. Thus, we may conclude that at the given value of angular momentum M =

−2.7703 an approximate interval a ∈ (0.323; 0.370) corresponds to bounded trajectories.
Let us finally note the following:

• The stationary state (figure 8(c)) corresponds to a motionless elliptical point in area {3}
of the phase portrait.
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(a)

(b) (c) (d)

(e)

Figure 8. Same as figure 7, but for longer computing time and for (a) a = 0.322 (analogue
of figure 7(e), type {1}), (b) a = 0.323 (case of figure 7(d), type {3}), (c) a = 0.346 (case of
figure 7(a), type {3}, colinear state), (d) a = 0.370 (analogue of figure 7(b), type {3}) and (e)
a = 0.371 (analogue of figure 7(c), type {2}).

• The initial configurations (figures 8(b) and (d)) correspond to points close to the crossing
of the boundary of area {3} and of the separatrices (to the right and to the left of the
elliptical point, respectively).

• The initial state of figure 8(a) corresponds to a point on the boundary of area {1}, and the
initial state of figure 8(e) to a point on the boundary of area {2}; both of them are also
located in the vicinity of the separatrix.

4. Nonlinear evolutions of finite-area vortices

Now we evaluate the influence of a finite vortex size on the evolutions of an opposite-signed
heton pair. A contour surgery code (see section 2) is initialized with finite-area vortices having
strengths (area-integrated potential vorticity) equal to those of point vortices, but with unit
radius. Finite-area vortices, in contrast to point vortices, are able to merge (if they are like-
signed and initially close to each other) or to decay into smaller structures (when unstable or
strongly sheared). Moreover, both processes are usually accompanied by filamentation.
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(a)

(b)

(c)

Figure 9. Regime diagrams for the finite-area heton pair in the (γ, b) plane for (a) a = 0.35, (b)
a = 0 and (c) a = −0.35. Notations: HD, two horizontal dipoles (regime {1}); TD, two vertically
tilted dipoles (regime {2}); LH, two L-shaped hetons; ZT, Z-shaped tripole (regime {3}). Dashed
lines represent the boundaries between regions {1} (left) and {3} (right) for the point heton pairs.
These boundaries were determined numerically with the point vortex model. They are related to
the separatrices of figure 3, but in a different parameter plane. The meaning of the markers is
explained in the captions of figures 10, 11, 13 and 14.

When describing the results of numerical experiments with finite-area vortices, non-
dimensional units of time are used everywhere. The non-dimensional time unit is the rotational
period of a fluid particle on a unit radius contour, for a heton with vertical axis, for
each γ .

Figure 9 presents a regime diagram in parameter space, summarizing the results of many
numerical simulations: it indicates the final state of the vortex system, as (a, b, γ ) are varied.

16



Fluid Dyn. Res. 42 (2010) 045501 M A Sokolovskiy and X J Carton

Table 1. Characteristics of baroclinic vortices described in the text and figures. The domains of
formation are given for a = 0 for both colinear initial configuration and head-on collisions.

Acronym Type of vortex structure Domain of formation

HD Horizontal dipole Weak layer coupling
LH L-shaped dipole (a columnar vortex Medium layer coupling and small to

associated with a satellite in one layer) medium distance between vortices
TD Vertically tilted dipole Medium to strong layer coupling and

medium distance between vortices
ZT Z-shaped tripole (a columnar vortex Strong layer coupling

with one satellite in each layer)
UZT Unstable Z-shaped tripole Strong layer coupling and

large distance between vortices

All calculations share similar features in their initial conditions:

• Vortices are circles of unit radius in a colinear configuration.
• Their centers are located on the x-axis.
• The distances between them are given by parameters a and b (see figure 1).

In figures 9(a)–(c), the minimum value of b corresponds to contact between same-layer
vortex contours.

The abbreviations for the various nonlinear regimes shown in figure 9 are the following:

• HD is the formation of two scattering ‘horizontal’ dipoles (analogue of motions of type
{1} for point vortices).

• TD is the formation of two vertically ‘tilted’ dipoles (analogue of motions of type {2} for
point vortices).

• LH is the formation of an L-shaped dipole, composed of a like-signed vortex column,
associated with an opposite-signed vortex in one layer (the segments linking the centers
of the vortex patches form a letter L, which may be normal or inverse); this vortex array
does not have a pointwise equivalent.

• ZT is the formation of a Z-shaped tripole, composed of a like-signed vortex column,
associated with an opposite-signed vortex in both layers, but lying at symmetric positions
with respect to the central vortex. The segments linking the centers of vortex patches look
like the letter Z. This vortex array has a pointwise equivalent only for very large values
of γ .

In figure 17, another regime, UZT, is mentioned; it corresponds to an unstable Z-shaped
tripole (see also table 1).

Firstly, figure 9 shows that the various regimes depend on all three parameters, but
stratification clearly has a dominant influence. Indeed, as for point vortices, motion of type
{1} occurs for weak layer coupling γ and motion of type {3} for moderate or strong layer
coupling predominantly. This is why we first investigate the influence of parameter γ on
finite-area heton interaction.

Secondly, this figure shows that parameter b is less influent, except for a > 0 where
regime transitions (LH to TD or ZT) occur. The HD regime does not exhibit a notable
sensitivity to parameter b. Thus, we will investigate the dependence of nonlinear regimes
on the geometrical parameters in a second stage.

Finally, the transition between the regimes of horizontal dipoles and of compact vortex
compounds (the equivalent of Z-shaped tripoles) for point vortices is indicated in figure 9.
This comparison shows the similarity between point vortex dynamics and finite-area vortex
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(a)

(b) (c)

Figure 10. Contour surgery simulations (CSS) of the nonlinear evolution of finite-area heton pairs
with a = 0, b = 2 and (a) γ = 0.1 (cf figure 5(a)), (b) γ = 1.4 and (c) γ = 4.0 (circle markers in
figure 9(b)). Here and in all figures with CSS, except figure 12, solid (dashed) lines correspond
to upper- (lower-) layer vortex contours. The polarity of the finite-area vortices (here and in
figures 11–15) coincides with that shown in figure 1.

dynamics, as long as vortex splitting and merging (specific of finite-area vortices) are not
involved. Indeed, figure 9(a) indicates a transition between regimes HD and TD for finite-
area vortices, but no transition between point vortex regimes {2} and {3} for the values of
(γ, a, b) in this case. As will be shown in section 4.1.2, a transitional state, with substantial
deformation of the central vortex, exists when interacting finite-area hetons form an HD for
a > 0. Since point vortices do not possess internal degrees of freedom, they cannot form an
HD structure in this case.

4.1. Influence of layer coupling

4.1.1. Initially aligned central cyclones. We first study the case of central cyclones initially
aligned vertically (a = 0).

For weak layer coupling (γ = 0.1), the nonlinear evolution leads to horizontal dipoles
HD (see figure 10(a)). This evolution presents a striking similarity to that of point vortices
(figure 5); indeed, opposite-layer contributions in equations (7) and (8) vanish as γ → 0.
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Once formed, horizontal dipoles drift away in opposite directions along the y-axis. The mutual
deformation induced on each vortex contour by the others is mainly composed of azimuthal
modes 1 and 2; this contour perturbation continues to oscillate on each traveling dipole, but it
decreases in amplitude every time that vorticity crosses the separatrix and filaments (see time
t = 5).

For medium to strong layer coupling and for close peripheral vortices (γ > 1.3 and
b 6 2.1), L-shaped hetons (LH) are formed—a newly observed vortex compound that has
no pointwise equivalent in our study (see figure 9(b)). Note that this evolution is observed
more generally when the central cyclones overlap significantly.

In figure 10(b), this LH formation regime is illustrated for γ = 1.4. Owing to the strong
shear due to opposite-layer anticyclones, the central cyclones split and each anticyclone pairs
with half the cyclone in its layer and half the cyclone in the opposite layer. L-shaped dipoles
then propagate in opposite directions in the two layers. In each L-shaped structure, the internal
antiheton vacillates, interacting with the anticyclone. If γ still increases, the two layerwise
cyclones become more coupled and the tilt of the internal antiheton decreases (see figure 10(c)
for γ = 4.0).

The transition from HD to LH formations is due to the larger inter-layer vortex
interaction, which strengthens the shear exerted on the central vortices.

For medium to strong layer coupling and for distant peripheral vortices (b > 2.1 and
γ > γc (b)∼ 0.8–1.5, the two-heton interaction forms a Z-shaped tripole (ZT). This finite-
area vortex compound is also a newly observed baroclinic multipole. It will be described in
more detail in the following subsection for a 6= 0 and in section 4.2 for a = 0.

The transition from LH to ZT formations is due to the weakening influence of peripheral
vortices, and therefore to a decreased shear on the central vortex, which remains stable and
aligned in ZT.

4.1.2. Initially distant central cyclones. When the central vortices are not aligned, the
question arises about their possible realignment in the course of nonlinear vortex interactions.
Noting that the case a = 0.35 provides the largest diversity of regimes, we study the influence
of layer coupling γ on the heton pair interaction for b = 2.05 (figure 11). The transition
between regimes HD (figure 11(a)) and TD (figure 11(c)) takes place between γ = 1.0 and
γ = 1.1. Again it is natural that weaker layer coupling favors horizontal vortex interaction
and stronger layer coupling favors vertical vortex interaction.

During the first stage of the evolution, the vortex array evolves toward a Z-shaped tripole
(ZT), which, however, is unstable. After a short period (here, about t = 4) it proceeds either to
an HD or to a TD, depending on γ . The transitional state will last all the longer as γ is closer
to its critical value in the interval γ ∈ [1.035, 1.036] (see figure 11(b), where γ = 1.035).

As γ increases again, the boundary between the TD and ZT regimes is reached. Indeed, as
layer coupling increases, the vertical alignment of the like-signed central vortices is rendered
more efficient, and Z-shaped tripoles are more likely to form.

For γ = 1.95 (figure 11(d)), the nonlinear regime is of type {2}, but the central cyclones
undergo active filamentation and shed small vortex patches (the area loss of the cyclonic
vortices is 29%).

For γ = 2.05, a stable Z-shaped tripolar structure is formed (figure 11(e)). This structure
is the finite-area equivalent of the end state of type {3} for point vortices. Again stabilization
is preceded by active filamentation and cyclonic vorticity losses are about 34%.

Figure 12 demonstrates that filament shedding is related to vortex fluid crossing the
separatrices. One can clearly see how the vorticity of the central vortices is trapped beyond
the saddle point of the co-rotating streamfunction and enters the external recirculation
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(a)

(b)

(c)

(d)

(e)

Figure 11. Evolution of finite-area heton pairs for a = 0.35, b = 2.05 and (a) γ = 1.0, (b)
γ = 1.035, (c) γ = 1.1, (d) γ = 1.95 and (e) γ = 2.05 (triangle markers in figure 9(a)).

domain. This patch of vorticity expelled by the central vortices forms a smaller vortex that
is initially connected to the saddle point area via a filament. This filament extends along the
separatrix.

To summarize, for weak layer coupling, the dominant mechanism is intra-layer
interaction leading to horizontal dipoles HD, whereas for moderate or strong layer
coupling, vertical vortex interaction becomes dominant and the outcome of these interactions
is two scattering vortex dipoles (TD), L-shaped hetons (LH) or a rotating Z-shaped
tripole.

4.2. Influence of the initial distance between vortices

Firstly, we examine the effect of parameter b (distance of the external vortices) on
the evolution of hetons at fixed a = 0.35 and γ = 1.5 (see the regime diagram in
figure 9(a)). Physically, we can expect that close peripheral and central vortices will
strongly interact and thus form (horizontal or vertical) vortex pairs, while distant peripheral
vortices will weakly advect and deform central vortices, resulting in the formation of a
tripole.
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Figure 12. Streamlines in the co-rotating frame and vortex patches in the upper layer (upper line)
and in the bottom layer (lower line) at the same early times as figure 11(e). Streamlines are drawn
in thin lines, separatrices in thicker solid lines and vortex contours in bold lines.

And indeed, figure 9(a) shows that two regime transitions occur, one at b = 1.72 between
LH and TD and one at b = 2.43 between TD and ZT. We concentrate here on the transition
between dipoles and tripoles.

Figure 13 shows the transition between the TD and ZT regimes. Figures 13(a) and (b)
correspond to initial conditions getting closer to the threshold. In the first case, the vortex
array rotates approximately by π/2 before being scattered, while in the second case, it turns
over 3π/2. In the second case, the intermediate stage (from t = 2 to t = 10) evidences a
vortex array with centers forming a uniformly rotating diamond. But these arrays are unstable
and the two hetons are finally scattered. For the central vortices to become aligned, a larger
value of b is necessary. It corresponds to a weaker influence of external vortices. For example,
figure 13(c) (corresponding to b = 2.45) evidences the formation of a Z-shaped tripole. During
the formation of this tripole (between t = 4 and t = 8), the vortex centers form a diamond that
flattens with time. Furthermore, the internal antiheton, which determines the global rotation,
begins to spin faster than the external vortices. As a result, the vortex pulsates and is not
stationary, but the whole compound remains a Z-shaped tripole. Note also that little vorticity
is lost via filamentation (3.5%).

Secondly, we evaluate the influence of parameter a on the type of evolution. Note that TD
and LH structures appear only for a > 0. Indeed, inter-layer coupling between opposite-signed
vortices will occur if they are initially close enough, and at least closer than opposite-signed
vortices in the same layer.

Figure 9 also indicates that, in the (a, b, γ ) space, the most widespread structures are
ZT (Z-shaped tripoles).

Figure 14 shows the influence of varying a on the formation of ZT, at fixed b and γ .
The first two cases (figures 14(a) and (b)) correspond to a vortex permutation

(1
1

)
and

(1
2

)
in

the initial internal antiheton. Due to the periodicity of the process (neglecting filamentation),
the configurations should be interchangeable at times of colinearity. The two evolutions are
indeed very similar. Due to the sufficiently strong layer coupling, the central vortices reach an
80% alignment rate, and a Z-shaped tripole is formed. The small peripheral vortices weakly
interact with the four other vortices and do not contribute much to their oscillations.
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(a) (b) (c)

Figure 13. Evolution of finite-area heton pairs for a = 0.35, γ = 1.5 and (a) b = 2.35, (b)
b = 2.4435 and (c) b = 2.45 (circle markers in figure 9(a)).

At a = 0 (figure 14(c)), the vortex structure is really a colinear Z-shaped tripole. The
shear on the central vortices is now slightly weaker, so that these vortices elongate but do
not break. As explained by Carton and Legras (1994), the elongated central vortex rotates
as fast as the two satellite anticyclones, so that the large axis of the central ellipse remains
perpendicular to their intercentroid axis. This maintains at all times the shear on the central
vortex below the critical value for breaking. This central vortex adjusts to an elliptical shape
by shedding filaments. After adjustment, a Z-shaped tripole emerges.
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(a)

(b)

(c)

Figure 14. Formation of a Z-shaped tripole for b = 2.35, γ = 2 and (a) a = 0.35, (b) a = −0.35
and (c) a = 0 (box markers in figures 9(a), (c) and (b), respectively.)

The last question that we address here is whether finite-area vortex configurations
can remain colinear at all times, even when a 6= 0. Obviously, dispersion equation (14),
obtained for point vortices, cannot be satisfied here, but such a configuration can be searched
numerically.

Figure 15 shows one such case of steady colinear configuration. Figure 16 confirms
stationarity by displaying the radius and angle of the central and peripheral vortices. This
solution is therefore a Z-shaped tripole with a 6= 0.

4.3. Baroclinic tripole formation from heton collision

Z-shaped tripoles shown in figures 11(e), 13(c), 14 and 15 were formed from initially
colinear configurations of circular vortex patches. The invariance of vortex configurations
was checked numerically over long periods (several hundred units of non-dimensional time).
As a consequence, such configurations can be regarded as invariant over their typical
lifetimes in planetary fluids. The question addressed here is the possible formation of a
Z-shaped tripole from the head-on collision of two hetons. Indeed, it is a well-known result
(Carton 1988) that two-dimensional tripoles can form from the head-on collision of two
dipoles.

23



Fluid Dyn. Res. 42 (2010) 045501 M A Sokolovskiy and X J Carton

Figure 15. Colinear vortex structure motion at a = 0.311, b = 2.2576 and γ = 1 (an analogue to
figure 7(a)). Vortex

(1
1

)
has horizontal filling and

(2
2

)
vertical filling.

Figure 16. Radius vector, r(t), and angle, ϕ(t), between r and the x-axis for the centers of fills’
vortices

(1
1

)
(solid lines) and

(2
2

)
(dashed lines) in the colinear structure of figure 15.

Figure 17 presents the regime diagram (in particular, for tripolar structures) for these
collisions with initial distance 2c between the two hetons along the y-axis; here c = 4. Unlike
previous cases, here b is the distance between the vortex centers in each heton. Initially,
for all these calculations, the cyclonic vortices of the upper and lower layers lie along the
y-axis in the upper and lower semi-planes, respectively, and the anticyclonic vortex patches
of the lower and upper layers belong to the left and right semi-planes (see figures 18 and 19).
The transition between regimes HD and TD for point vortices dynamics is superimposed on
figure 17, indicating a qualitative similarity between point vortex dynamics and finite-area
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Figure 17. Regime diagram of the finite-area heton pair head-on collision in the (γ, b) parameter
plane for a = 0 and c = 4: HD is horizontal dipole formation, TD is vertically tilted dipole
formation, HD + TD is a combination of horizontal dipole and vertically tilted dipole, ZT is
Z-shaped tripole formation, LH is L-shaped heton formation and UZT is an unstable Z-shaped
tripolar structure. The dashed line represents the boundary between regions {1}—analogue of HD
and {2}—analogue of TD for the point heton pairs (left and right, respectively). This boundary
was determined numerically using point vortex theory. The meaning of the markers is explained
in the captions of figures 18, 19 and 20.

(a)

(b)

(c)

Figure 18. Head-on collision of the heton pair at a = 0, b = 2.5, c = 4 and (a) γ = 1.25, type HD,
(b) γ = 1.5, type TD, and (c) γ = 1.75, type ZT (circle markers in figure 17).

vortex dynamics: predominantly intra-layer interactions occur for low values of γ (or of b),
whereas predominantly inter-layer interactions occur for large values of γ and b.

The main dynamical regimes are illustrated by three examples (figure 18). For moderate
layer coupling (γ = 1.25), the internal vortices are exchanged between the two hetons
(figure 18(a)). The intra-layer interaction of vortices is predominant. The final state is a pair
of horizontal dipoles along the y-axis. For stronger layer coupling (γ = 1.5, figure 18(b)),
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Figure 19. Same as figure 18, but for γ = 4 and b = 2.8 (triangle marker in figure 17). Type UZT
vortex evolution.

exchange of partners does not occur, and vertical dipoles rotate by about 180◦ and drift away.
Finally, as γ is increased again (γ = 1.75, figure 18(c)), a Z-shaped tripole is formed. Thus,
Z-shaped tripoles can be formed from a variety of initial configurations of two opposite-signed
hetons with zero total impulse. Therefore, it is an important type of baroclinic tripole.

An example of an unstable Z-shaped configuration is given in figure 19 for a case of
relatively weak stratification. After the formation of a tripolar structure, the central antiheton
is captured by one of the peripheral anticyclones. Then, a transition occurs to a vortex array
composed of an L-shaped structure, moving away from the center, and a quasi-static isolated
anticyclone. In this case, the dissipation of the central vortices reaches more than 40% because
of strong filamentation. Due to weak stratification, the shear exerted by peripheral vortices
on the central vortices prevails on the vertical alignment of the latter; this explains why the
tripolar vortex is unstable. Note that the existence of unstable tripolar vortices has already
been evidenced by the laboratory experiments of Flór and van Heijst (1996).

Figure 20 displays a vortex evolution of the type HD + TD. During the initial stage,
the main process is the instability of hetons with mode m = 3. They form two small-scale
hetons with tilted axis, which move toward each other, and four non-compensated two-layer
vortices, which, by pairs, move along arched trajectories. The non-compensated two-layer
vortices collide by pairs and, after a merger of vortices in each layer, form two hetons running
away along the y-axis. The other two hetons, after colliding, transform into two horizontal
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Figure 20. Same as figure 18, but for γ = 3 and b = 0.1 (box marker in figure 17). Type HD+TD
vortex evolution.

dipoles drifting apart. The formation of two horizontal and two vertical dipoles, which scatter
practically at the right angle, is the result of such a multistage interaction.

5. Conclusions

5.1. Main results

The finite-time evolution of a heton pair with zero linear impulse was studied analytically and
numerically for various values of angular momentum.

For point vortices, the conservation of five integral quantities ensures the integrability
of vortex motion. Specific solutions can be obtained analytically, in particular for weak and
strong layer coupling. Then, the possible vortex trajectories were classified using trilinear
coordinates.

For weak layer coupling, trajectories are open and correspond to horizontal dipoles.
For moderate layer coupling, trajectories are still open but a transition between horizontal
dipoles and hetons is possible. For even stronger layer coupling, a regime of closed, periodic,
trajectories appears.

In physical space, closed trajectories correspond to central vortices closer to the center of
the plane as γ increases (if they were initially located at this center). Therefore, a pointwise
baroclinic tripole, which is Z-shaped, is possible at large enough γ . Furthermore, we have
shown the existence of a new, stationary, pointwise vortex compound: a four-vortex structure
in ‘solid-body’ rotation3 Point vortex trajectories in the rotating frame of reference also
evidence four-vortex states with periodic motion of the central vortices.

Finally, as indicated by the trilinear coordinate regime diagram, the transition between
tripole, horizontal dipole and hetonic regimes also depends on the initial tilt of the central
vortices (parameter a).

3 Recently, Kizner (2006) obtained a family of translating stationary solutions for four vortices in a two-layer fluid,
called ‘heton quartets’.
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To reach more realism, the interaction between two finite-area, opposite-signed hetons
was studied numerically.

Firstly, as layer coupling is increased, numerical simulations evidence a transition
between open trajectories of horizontal dipoles, or mixed heton-horizontal dipoles (called L-
shaped dipoles), to closed trajectories of baroclinic (Z-shaped) tripoles, when the two central
cyclones were initially aligned. This shows the similarity between point vortex dynamics
and finite-area vortex dynamics, as long as vortex splitting or a merger is not involved. The
formation of an L-shaped heton is specifically a finite-area evolution, since it results from the
breaking of the central cyclones under the shear exerted by the peripheral anticyclones.

Secondly, increasing the separation between the central cyclones diminishes their
interaction and favors the formation of horizontal dipoles. The formation of a Z-shaped tripole
is therefore favored by small initial distances between the central cyclones and by strong layer
coupling. Since they form from initial conditions different from their final state, Z-shaped
tripoles appear as attractors for a variety of initial conditions.

Thirdly, oscillating states, intermediate between horizontal dipoles and the Z-shaped
tripole, also occur.

In summary, this study has not only classified and explained the nonlinear regimes
of heton interaction, initially colinear or distant, but has also evidenced two robust vortex
compounds of baroclinic flows: the L-shaped heton and the Z-shaped tripole.

Figures 9 and 17 have shown the similarity between the dynamics of finite-core hetons
and of point hetons, although the former are more complex than the latter. This similarity is
based on the strength of layer coupling and on the interactions between the satellite and the
central vortices. These influences have been detailed for each part of the study.

5.2. Relation to previous work and perspective

Referring now to the Corréard and Carton (1998) study, which was one of the motivations for
this study, we have rationalized here all the vortex evolutions that were observed then. This
rationalization lies both on our point vortex study, which provides the domain of existence
of closed and open trajectories, and on the nature of the vortex associations that prevail
in each part of the parameter plane: formation of hetons, horizontal dipoles and tripoles.
Furthermore, the present study confirms that these dynamical regimes also hold for finite-area
heton pairs and that new vortex compounds (the L-shaped dipole) form only from finite-area
heton interactions.

The two main differences between our work and that of Corréard and Carton are the
uniformity of potential vorticity inside the vortex disks and the vertical symmetry of the
potential vorticity distribution, which exist here and not in the former study. Nevertheless,
both studies conclude that the Z-shaped tripole is a long-lived vortex compound in rotating
stratified flows. Therefore, although the Corréard and Carton study was conducted in a less
systematic manner than the present study, it then provides evidence that vertically asymmetric
and horizontally non-uniform, opposite-signed heton pairs display dynamical regimes similar
to those of symmetric and uniform heton pairs.

We also put our present results in perspective with other former studies (Corréard and
Carton 1999, Sokolovskiy and Verron 2000a, 2000b, 2002a, 2002b). These studies have
evidenced how T-, 3- and 5-shaped tripoles can originate from the instability of baroclinic
vortices. Previous studies also showed that 3-shaped tripoles (also called ‘roundabout’) can
originate from the head-on collision of like-signed hetons (Sokolovskiy 1989, Sokolovskiy
and Verron 2000b). In that interaction, two like-signed vortices merge in the same layer and
form a larger core, while opposite-signed vortices become satellites. ‘Roundabout’ tripoles

28



Fluid Dyn. Res. 42 (2010) 045501 M A Sokolovskiy and X J Carton

can also form from the instability of a single heton, but only when h1q1 + h2q2 6= 0 (Kozlov
et al1986, Sokolovskiy and Verron 2000a). Here, it was shown that Z-shaped tripoles can
originate from the head-on collision of opposite-signed hetons.

The classification of these various forms of tripoles and the determination of their domain
of stability should be carried out in a further study, along with that of more complex baroclinic
multipoles (quadrupoles, pentapoles, etc). This study should provide a map of possible
transitions between baroclinic monopoles, dipoles and multipoles, as was obtained for two-
dimensional vortices by Morel and Carton (1994).

5.3. Observations of baroclinic multipoles

Another justification for our study was the existence and the role of hetons in planetary
fluids. It must be noted that baroclinic multipoles, such as those evidenced by the present
study, have also been observed in the oceans. A baroclinic tripole was observed in the
Bay of Biscay, forming from the instability of the Navidad Current on the Cape Ferret
Canyon (Pingree and Le Cann 1992). The association of meddies (Mediterranean water
eddies), intensified at mid-depth of the northeastern Atlantic Ocean, with Mediterranean water
cyclones of much larger vertical extent is an illustration of L-shaped hetons. Such vortex
compounds are relatively stable in the ocean, since their trajectory was followed for 6 months
(compared to a 5-day internal rotation period). These examples suggest that the formation
and life-cycle of baroclinic multipoles should also be studied in the presence of a mean
flow.
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